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Abstract In this paper we present a boundary reconstruction methodology which
builds a valid model in the neighborhood of an object described by a
traditional boundary representation model with floating point specifica-
tion. This method converts an erroneous model into an interval model,
guaranteed to be gap-free. An example illustrates our methodology for
robust conversion.
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Introduction

Boundary representation (B-rep) contains topological and geometric
information of solid boundaries. Topological information, in general,
is represented by a graph describing incidence and adjacency relations
between topological boundary entities. Geometric specification involves
equations for points, curves and surfaces. A B-rep model is called valid
if it describes a solid boundary. However, as is well-known, the validity
of B-rep models is not self-guaranteed [4, 10, 12].

Invalid B-rep models contain defects — representational entities that
do not conform to modeling constraints due to topological errors and/or
inconsistencies between topological and geometric specification. Defects
often appear as gaps, inappropriate intersections, dangling entities, in-
ternal walls and inconsistent orientations [17]. Causes of defects exist
throughout the entire life cycle of a model, such as computational inac-
curacy stemmed from floating point arithmetic [4, 5] and approximation
algorithms in model creation and inconsistent conversions in data ex-
change across heterogeneous modeling systems [11].



Research on model rectification (correction) has been done mainly
on triangulated models, specifically, STL models for rapid prototyping.
Most algorithms [1, 9] identify erroneous triangle edges, string such edges
to form hole boundaries, and then fill holes with triangles. These algo-
rithms use local topology (incidence and adjacency) to rectify defects
and are successful in the majority of candidate models, but may create
undesirable global topological and geometric changes.

In our earlier work [16], we argued that the model rectification prob-
lem should be approached as a boundary reconstruction problem in order
to achieve a global optimal solution, and showed that the boundary re-
construction problem is NP-hard. In order to construct gap-free B-rep
models, we further developed the concept of interval solid models [15],
which was first introduced by Hu et al [7, 8]. Based on these, in this pa-
per, we develop a boundary reconstruction methodology. The objective
is to reconstruct a B-rep model from a given B-rep model represented in
a certain format (e.g. STEP) using interval arithmetic.

The methodology proposed in the following sections consists of three
main steps: 1) construction of a graph induced by surface intersections
for each surface, 2) face reconstruction, and 3) shell reconstruction. The
methodology follows very closely the proof of NP-hardness of the bound-
ary reconstruction problem in Shen et al [16]. It mainly focuses on cap-
turing miniature numerical gaps and fills them with appropriate boxes.

In the following, we first describe the three steps of the procedure
in detail. Then, we show an example to illustrate the use of interval
methods in model verification and rectification.

1. Intersection-induced graph

Edges of a B-rep model are embedded on intersection curves of the
underlying surfaces. On each of the surfaces, intersection curves form a
geometric embedding of a graph with their intersections as nodes and the
curve segments as arcs. As discussed in Shen et al [16], face boundaries
must consist of arcs in this graph in order to achieve geometric consis-
tency of all topological relations (incidence and adjacency) in which the
face is involved.

In the proposed boundary reconstruction method, an intersection
curve is computed using surface intersection algorithms developed by
Hu et al [6], and is represented as an ordered list of non-degenerate rect-
angular boxes [14]. Therefore, the geometric embedding of an arc in the
graph is an ordered list of boxes, called a boz curve, and that of a node
is a (unordered) cluster of boxes, called a boz point. Whenever a new in-
tersection curve is computed, the two graphs on the intersection surfaces
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need to be updated. The new curve is intersected with the geometries
of all arcs and nodes in both graphs, and is subdivided into a list of
box points and box curves, which are then inserted into both graphs to
create new nodes and arcs.

2. Face reconstruction

Let R be the underlying surface of face f° in model M°, and G be
the intersection-induced graph. As in model creation, boundary recon-
struction proceeds in a bottom-up manner.

An edge €° involved in a certain adjacency relation between f° and
another face f{ must be embedded in the intersection curve C' of R
and R;. The reconstruction of e® starts with its vertices v{,v9. The
corresponding new vertices v{, vy are two nodes in Gy. Each of these
nodes must have at least one incident arc constructed from C, i.e. the
new vertices are on the intersection curve. In addition, each selected
node should be the closest to the original position of the corresponding
old vertex among all such nodes to minimize the geometric change in
boundary reconstruction. See Figure 1 for illustration, where the dotted
lines are arcs of Gy.

original
underlying curve

Figure 1.  Reconstruction of vertices

The reconstruction of e? amounts to finding a path between the two
selected nodes in GGy. Again, the selected arcs must be constructed from
the intersection curve C. If there exist multiple paths, the one with the
minimum deviation from the original geometry of e® should be selected.
This often happens when C' contains self-intersections or is closed, e.g.
a circle. With the edge orientation given in e°, it shall be clear which
part of C belongs to an edge, unless the underlying curve of e® in M? is
far different from C. Thus, new edge e” is oriented in the same way as
€e°.

For a loop [?, new edges form a subgraph G, in G ¢, which may not be
a simple closed curve. Though an arbitrary graph could be very compli-
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cated, the proposed method intends to resolve miniature features such
as small dangling arcs and gaps. It first identifies two types of nodes in
Ge: free node that has exactly one incident arc, and branch node that
has more than two incident arcs. Dangling arcs are then identified by
marching from a free node until another free node or a branch node is
reached, and then trimmed away if the geometric change due to such ac-
tions is within a given tolerance. Large pieces of dangling arcs indicates
the existence of gaps. Let v1,v2 be two ends of a gap. The shortest path
between v1, vq is then searched in Gy, where G; = Gy — (Ge — {v1,v2})*.
See Figure 2 for illustration. Finding the shortest path between two
nodes in a graph is a polynomial problem. Algorithms can be found in
many textbooks on graph theory, such as [2]. Edges in the newly con-
structed loop I™ are oriented in the same way as their corresponding old
edges are in [°. Consistency can be verified by marching through these
edges.

G —(Ge—{v 1,v 2})
shortest
path

@ (b) (©)
Figure 2.  Gap closing in loop reconstruction

A face may have more than one loops. Loops reconstructed indi-
vidually need to be modified so that together they define a valid face
boundary. The modification process includes eliminating intersections
between loops, verifying relative locations of loops, and orienting loops
consistently. To retain the design intent of the face topology, the result-
ing loops should also be homeomorphic to the original face topological
structure in the strong sense?, provided that the latter is a graph con-
sisting of simple cycles sharing at most one common node pairwise [13].

Any two loops share at most one common vertex. Assume two loops
[} and I3 share more than two vertices. We will resolve cases of two

1Here, the difference between graph G(V, E) and its subgraph G1(Vi, E1) is another subgraph
consisting of nodes V — V; and arcs incident to these nodes.

2Two face topological structures are homeomorphic in the strong sense if they are homeo-
morphic and their outer loops are homeomorphic as well [16].
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common vertices. Cases involving more than two common vertices may
follow the same approach. Let v1, v2 be two common vertices of [T and [3.
Let P; be the shorter path between v;, vy in I}, and P be that in [7. Also
assume that the corresponding original loops I and g are topologically
correct. The following is a brief description of the algorithm. See also
Figure 3.

1 If both {T and /5 are inner loops,

(a) If Py is outside I3, and P, is outside {7,

i If I and [§ do not have common vertices, first, delete v;
and v and their incident arcs in [T, i.e. I} « I} —{v1,v2},
and then, fill the gap in graph Gy — (T — 3. If the gap
can not be filled, try the same in /3.

ii If [{ and [§ share one common vertex, first, delete v; and
its incident arcs in 7, i.e. I < I} — {v1}, and then, fill
the gap in graph Gy — [T —13. If the gap can not be filled,
try the same in I3, or by deleting vs.

iii If 1§ and [§ share one common edge, delete P, P, and
merge [T, 13.

(b) If P, is inside I, and P, is inside I}, switch P, and P, and
do the same as Step 1(a).

(c) If P, is inside [§ while Ps is outside [T, delete Py, P» and merge
It,13.

2 If one, say I7, is the outer loop,

(a) If 1% is inside IT, do the same as Step 1(a).

(b) If one part of I% is outside [}, delete P, P, and merge [T and
3.

In Step 1(a) of the above algorithm, if {7 and {§ can not be modified
in accordance with the topological structure of I{ and [§, topological
changes are then necessary. For example, if Step 1(a)i fails, we may try
Step 1(a)ii by ignoring the topological structure. For two loops sharing
a common edge, if the feature exists in the original topological structure,
the two loops should be merged by trimming the edge; otherwise, the
edge should be deleted from one of the loops and the induced hole needs
to be closed as above.

Whether a part or an entire loop [} is inside another loop {3, can be
verified by checking a box of [T which does not intersect I5. The ray
casting algorithm should be applied to the pre-images in the parameter
domain of the underlying surface. Let R be a horizontal or vertical
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Figure 3. Loop modification

ray from a box b. Compute the intersections between R, and boxes
in [§. The intersections are intervals, representing coordinate values in
the direction of the ray. Merge all intersecting intervals. The number
of remaining intervals is then the number of intersections. The same
algorithm is also used to verify the relative locations of the loops. All
inner loops must be inside the outer loop, and no inner loop is inside
another inner loop.

The orientation of a loop can be determined by computing the rotation
index [3] of its pre-image in the parameter domain. Select an arbitrary
point ¢ inside a loop. Let {c;} be centers of boxes in the loop. Then,
the rotation index is

1
SESWC SR 1)
where / denotes the positive angle between two vectors. This number
should be close to £1 if box sizes are small. A loop is positively oriented
if r = 1, and is negatively oriented if r ~ —1. The outer loop must be
positively oriented, and all inner loops must be negatively oriented.

3. Shell reconstruction

A shell consisting of faces reconstructed individually may have dan-
gling patches, internal walls and holes, and may be inconsistently ori-
ented. Similar to algorithms for STL model rectification, shell recon-
struction identifies those edges shared by only one or more than two
faces, and string them together to form simple closed curves. Such a
simple closed curve may bound a hole if each of its edges has exactly
one incident face, and bounds an internal wall if each of its edges has
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more than two incident faces. If it consists of two connected pieces, one
having edges with one incident face and the other having edges with
three incident faces, then, the closed curve bounds a piece of dangling
patch. More complex situations similar to what were studied by Bohn
and Wozny [1] could happen. Heuristic rules could help in such situa-
tions, but user assistance is frequently needed in resolving certain ambi-
guities. Here, we only deal with the above mentioned three situations,
and leave other cases to user resolution.

Dangling patches with very small sizes shall be trimmed away first.
The boundary of an internal wall actually bounds three connected pieces,
each of which is an open shell. The one inside the shell formed by the
other two is the internal wall and shall be deleted. Whether an open
shell is inside a closed shell can be verified by a ray-casting algorithm in
a similar manner as in loop reconstruction. In the following, we present
a method for filling holes using surface patches constructed from the
underlying surfaces by surface intersections. Let {e;} be the edges in a
hole boundary and already sorted in order. The method fills the hole
progressively by attaching new patches to the boundary and computing
the new hole boundary. This is a trial-and-error process. It tests all
possible combinations of patches until one is found to fill the hole. In
the selection of patches, those with small sizes are preferable so as to
minimize the geometric change. For an edge e in {e;}, a patch shall be
selected first if it is embedded on the same surface as the face sharing
e. This patch can then be merged to the face, so that no new face is
introduced and the change to the topological structure is minimized. See
Figure 4 and the following description:

1 Start with eg. Find a patch of small size and incident to ey. Denote
the new patch by f§.

2 Let e; be the current edge, v; be the common vertex of e;_1 and
ei, and e} be the edge on f/ ; incident to v;.

3 Find a patch f] of small size and incident to e; and €.

4 TIf no such patches exist, go back to edge e;_1 and select a different
patch as f;_;. It may be necessary to search further back.

5 Repeat Step 2 to 4 until the process reaches ey again.
6 Update the hole boundary {e;}.
7 If {e;} is not empty, repeat Step 1-6.

Shells constructed individually may share vertices, edges and/or faces.
Such features should be detected and eliminated. Similar actions to
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Figure 4. Hole filling in shell reconstruction

those of loop modification should be taken to achieve topological validity
and retain design intent. For instance, if two shells share one common
face and the face is in the original topological structure, then, it should
be deleted and the two shells should be merged, because such a face is
likely to be an internal wall left by improperly implemented regularized
Boolean operations. However, if it is a face introduced to fill a hole, it
should be trimmed away, together with all of its adjacent faces, and the
induced hole must be closed.

4. Example

The model shown in Figure 5 is one part of a shaver handle, and cre-
ated using a commercial CAD system. The size of the model is roughly
0.04m x 0.06m x 0.14m. The underlying surfaces of the model consist
of 16 integral and rational B-spline surfaces, 3 cylindrical surfaces and
5 planes. The global uncertainty measure is given by the designer as
10 %m. The model has V = 40 vertices, E = 62 edges, F = 24 faces,
no inner loop, and one shell. The topological structure satisfies the suf-
ficient conditions presented in Sakkalis et al [13]. Therefore, from the
Euler-Poincaré formula V — E + F = 2(1 — G), we can deduce that the
model has genus G = 0 and thus it is homeomorphic to a ball.

Figure 5. Part of a shaver handle
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We convert this model into an interval solid model. Because edges in
the original model are reasonably computed, initial conversion of each
face is performed by growing the width of underlying curves of its edges
by a given resolution. If such growth gives a valid face, the conversion
of the face is finished, unless adjacency relations with neighboring faces
are violated. For the latter cases, the reconstruction process using the
proposed methodology is then performed.

The experiment starts with resolution 10~%m, given in the original
STEP file. Eight faces have edges not on their underlying surfaces.
Figure 6 shows one face with 2 edges partially on the underlying surface
and one edge not overlapping the surface at all. Further computation
reveals that the original face becomes valid at resolution 2 x 10~*m.
Figure 7 shows the valid face boundary. Overall, the model becomes
valid at resolution 5 x 10~ *m.

Figure 6.  An invalid face with reso- Figure 7.  The same face as in Figure
lution 10~ %m 6 becomes valid resolution 2 x 10~ 4m.

We now test whether it is possible to reconstruct an interval model
at the given resolution 10 %m, i.e. when all the surfaces in the model
become interval surfaces with width 10 %m. For the face in Figure 6,
because its underlying surface, now an interval surface, does not inter-
sect one of the surfaces on which its adjacent faces are embedded, no
valid face boundary can be constructed from surface intersections. If we
further grow the width of all the surfaces to 10 °m, the face can then be
reconstructed. The remaining seven invalid faces can be rectified at var-
ious resolutions, and an interval model can be constructed at resolution
5x 10 °m.
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