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Abstract—In this paper we describe a fully integrated system
for detecting and tracking pedestrians in a dynamic urban
environment. The system can reliably detect and track pedestrians
to a range of 100 m in highly cluttered environments. The system
uses a highly accurate 3D LIDAR from Velodyne to segment the
scene into regions of interest or blobs, from which the pedestrians
are determined. The pedestrians are then tracked using probabil-
ity hypothesis density (PHD) filter which is based on random finite
set theoretic framework. In contrast to classical approaches, this
random finite set framework does not require any explicit data
associations. The PHD filter is implemented using a Gaussian
Mixture technique. Experimental results obtained in dynamic
urban settings demonstrate the efficacy and tracking performance
of the proposed approach.

Index Terms—Tracking, Velodyne, RFS, PHD filter

I. I NTRODUCTION

The ability of unmanned autonomous vehicles to detect and
avoid colliding with objects in their area of operation is critical,
especially in cases where they operate in close proximity to
humans. In order to be operational and effective in dynamic
urban environments, these vehicles must be able to detect
people and track their motion in uneven terrain with varying
degrees of clutter, occlusion and illumination. Laser scanners
have proven to be efficient and less noisy in comparison with
other ranging sensors such as radar and ultrasonic sensors
that provide direct distance measurements. Most laser sensors
reported in literature are restricted to two dimensions, that
scan along a plane within a limited viewing angle. Mounted
parallel to the ground plane, each scan acquires a sequence of
range and bearing measurements. This allows easy detection
of objects in the environment by applying straight forward
signal processing methods. However, objects above or below
the scanning plane cannot be detected. The limited number of
measurements thereby complicates classification and tracking
of objects. Additionally, in uneven terrains, the scanner might
fail to detect objects. Over the last few years, fully three-
dimensional laser scanners have been introduced. These 3D
laser scanners use an array of beams organized in multiple
planes to provide range, bearing and azimuth data of objects.
This allows detection of many kinds of objects, with pedestri-
ans in particular, even when the surrounding terrain is uneven.

Thus the pedestrian tracking problem using 3D LIDAR can
be decomposed into two main tasks, namely the detection of

the objects of interest, in this case the pedestrians, in each
frame and tracking these detections over time. The major
challenge is to estimate the state of an unknown number of
pedestrians, based on the measurements corrupted by noise,
in the presence of clutter. The classical approach for solving
this problem is to use a stochastic filter such as Kalman
filter or it’s variants to each object and use a data association
technique such as the nearest neighbor to assign the appropriate
measurement to each filter and track each object separately [2],
[9]. An alternative and a more elegant approach is to consider
these unknown number of pedestrians as a multi-object set
represented by a single meta object and the measurements
received by the sensor as a single set of measurements [7]
and modeling them as random finite sets (RFS). This allows
estimating multiple objects in presence of clutter and with
data association uncertainty to be cast in a Bayesian filtering
framework.

There has been extensive research on pedestrian detection
and tracking using optical stereo vision [1] and 3D LIDAR
[8], [11], with specific interests towards unmanned autonomous
vehicles. In order to reduce false alarm rates, which can be sig-
nificant in cluttered urban landscapes, most of the algorithms
are usually catered to detecting and tracking moving upright
pedestrians [1], [8]. However, these methods have reported
to perform reasonably well in partial occlusion, non-upright
postures and static pedestrians. In this paper we describe
a fully integrated system based on RFS for detecting and
tracking pedestrians using a 3D LIDAR in a dynamic urban
environment. It involves the application of the probability
hypothesis density (PHD) filter, which is a recursion that
propagates the first order statistical moment of the RFS of
states in time, to track multiple objects of interest in presence
of measurement uncertainty and false alarms without any
explicit data association [6]. Due to its ability to handle non-
linear and variable number of targets, it has been applied in
various fields ranging from tracking multiple moving targets
in uneven terrain [10] to detecting and tracking of underwater
objects [4], [3], location of targets observed from multiple bi-
static radars [12] and tracking human figures in digital video
[14]. Our main contribution in this paper is the adaptation
of the PHD filter based on finite set statistics (FISST) to
the complex real-world pedestrian tracking scenarios using 3D



scanning LIDAR, with particular emphasis on Velodyne HDL-
64E1. We demonstrate its performance with the data obtained
in a natural urban landscape.

The remainder of the paper is structured as follows. Section
II details the data acquisition from Velodyne HDL along with
pre-processing steps involved. Section III reviews the basics
of PHD filtering followed by the process and measurement
models as used in the filter. It also discusses the GM-PHD
object tracking algorithm using Velodyne HDL. Results, based
on the experiments conducted are presented in Section IV.
Section V concludes the paper.

II. V ELODYNE DATA PROCESSING

Our method of object tracking is based on a scan-wise
acquisition and processing which is performed in several steps:
a scan acquisition from a Velodyne HDL which is a 3D-
LIDAR, followed by a segmentation to determine the region of
interest (ROI), and finally a GM-PHD filter based pedestrian
tracker. The Velodyne HDL provides 3D range scans by
rotating an array of64 beams around its vertical axis at5−15
Hz (10 Hz in our application) and producing close to around
1.8 million points per rotation. In the horizontal direction,
the array provides360o field of view (FOV) with an angular
resolution of approximately0.09o. Vertically, the pitch angles
range from−24.8o to +2o with an angular resolution of0.4o.
Its range measurement accuracy typically is within10 cm. The
sensor is mounted on top of the platform providing range scans
with a full FOV in horizontal direction.

A. Segmentation and Blob Extraction

The 3D point cloud data from each scan is projected onto
a cylinder whose axis is the rotational axis of the Velodyne
HDL. This projection yields a range image, whose pixel
intensity values correspond to the distance measurements as
shown in fig. 2a. The bearing and azimuth index(u, v) in the
range image is a direct mapping of the bearing and azimuth
values (θ, φ) from the Velodyne HDL. Fig. 1 shows a 3D
point cloud of the experimental environment as perceived by
Velodyne HDL and its corresponding optical image. The range
image is segmented using mean shift segmentation technique
to determine the ROI in the range image. The segmentation
process mainly comprises of two steps: mean shift filtering of
the original range image data, followed by blob extraction of
the filtered data points. A result of the blob extraction process
on the range image is as shown in fig. 2. The mean of the range
valuesr, in each blob along with its corresponding bearingθ,
in the range image forms a single measurementz = {r, θ}. A
collection of these measurements form a measurement setZ,
that is used to update the PHD filter, the details of which are
discussed in the following section.

III. T RACKING ALGORITHM DESCRIPTION

This section describes the method for tracking multiple
unknown number of pedestrians from the Velodyne HDL
in presence of clutter. To achieve this, we use the PHD

1referred to as Velodyne high definition LIDAR (HDL)

filter that is based on finite set statistics [6]. Modeling set
valued states and measurements as RFS allows the problem
of estimating multiple unknown of objects to be formulated
in a Bayesian filtering framework. However, the propagation
of the full posterior distribution using the optimal Bayesian
approach is not practical due to computational complexity.A
recursive Bayesian approach for approximating the first order
statistical moment of the full posterior distribution known as
the Probability Hypothesis Density (PHD) was proposed by [6]
as a tractable alternative to the optimal Bayes filter. However,
the realization of the PHD filter involves multiple integrals that
have no tractable closed form expressions in general. Sequen-
tial Monte-Carlo (SMC) [6] and Gaussian mixture (GM) [13]
approximation techniques were devised to implement the PHD
filter. In this paper, we apply the Gaussian mixture variant to
implement the PHD filter for reliable tracking of the unknown
and varying number of pedestrians as observed by Velodyne
HDL.

A. The PHD filter

Let the state of single object at timek be represented
by xk = {xk, ẋk, yk, ẏk} ∈ F(x), where (xk, yk) are the
object position and(ẋk, ẏk) the object speed andF(x) is
the single object space. Let the single object measurement
at time k, which is as a result of segmentation and blob
extraction from a single Velodyne HDL scan be represented
by zk = {rk, θk} ∈ F(z). The corresponding multi-object
states and the multi-object measurements are represented as
finite setsXk = {xk,1, . . . , xk,Nk

} andZk = {zk,1, . . . , zk,lk}
which contain states of individual objects and measurements
respectively2. The PHD filter recursion is a two step process:

• PHD time update: Given the process model, the pre-
dicted PHD,

Dk|k−1(xk|Z
(k−1)) =

new objects
︷ ︸︸ ︷

γk(xk) +

∫
existing objects

︷ ︸︸ ︷

pS(xk−1).fk|k−1(xk|xk−1)

.Dk−1|k−1(xk−1|Z
(k−1))dxk−1

(1)
where,

– γk(xk): PHD of the new incoming objects within the
Velodyne HDL field of view (FOV)

– pS(xk−1): Probability of an object being re-observed
• PHD data update: Given a new set of measurementsZk,

the updated PHD,

Dk|k(xk|Z
(k)) = (1− pD)Dk|k−1(xk|Z

(k−1))

+
∑

zk∈Zk

pDDk(zk)

λcck(zk) + pDDk(zk)
Dk(xk|zk)

(2)
where,

Dk(zk) =

∫

fk(zk|xk)Dk|k−1(xk|Z
(k−1))dxk (3)

Dk(xk|zk) =
fk(zk|xk)Dk|k−1(xk|Z

(k−1))

Dk(zk)
(4)

2
xk,i andzk,i are denoted asxk andzk for notational simplicity.



Fig. 1: 3D point cloud of the experimental environment as perceived by Velodyne HDL and its corresponding optical image
(inset). The intensity of the signals are color-mapped withdarker colors representing stronger intensity returns.
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(a) Range image. Each pixel value correspond to a distance measurement as indicated by the colorbar.

(b) Segmented range image. The red blobs inside the rectangle indicate the output of the segmentation algorithm.

Fig. 2: Illustration of projection of point cloud from a scanin fig. 1 to obtain a range image. The result of mean-shift segmentation
on the range image in (a) results in a segmented range image (b).



and,

– fk(zk|xk): is the sensor likelihood functionLz(xk)
– λc: average number of false alarms per scan, which

is assumed to be Poisson distributed
– ck(zk): distribution of each of the false alarms

B. Implementation of the GM-PHD filter tracker

In this work, we assume that each object moves according
to the following Gaussian dynamics i.e.,

xk =









1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1




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(5)
and the measurement model

rk =

∥

∥

∥

∥

1 0 0 0
0 0 1 0

∥

∥

∥

∥

xk + w1,k

θk = arctan

(

[

1 0 0 0
]

xk
[

0 0 1 0
]

xk

)

+ w2,k

(6)

Thus, the state and the measurement process can be succinctly
described as,

xk = Fkxk−1 +Gkvk−1 (7)

zk = hk(xk,wk) (8)

wherevk−1 andwk are assumed to be zero mean Gaussian
process noise and measurement noise with covariancesQk−1

and Rk, respectively. The implementation of the GM-PHD
multi-object tracker is as proposed in [13]. For completeness,
we summarize the key steps of the Velodyne HDL GM-PHD
multi-object tracker in Table 1.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted in a natural outdoor setting
at a car-park within the university. Fig. 1 shows a 3D point
cloud of the experimental environment as perceived by Velo-
dyne HDL and its corresponding optical image. The parameters
used for the GM-PHD multi-object tracker are as follows.
The number of Gaussian mixtures in the GM-PHD filter is
limited to Jk|k = 100, with the Gaussian mixture pruning
and merging parameters set toτp = 10−15 and τm = 4
respectively. Two sequences demonstrating the performance of
the multi-object tracker based on GM-PHD filter are shown
fig. 3. The PHD filter does generate false estimates at times as
observed at the end of the first sequence in fig. 3a. However, if
the detections are not coherent and consecutive and the clutter
is not persistent, then the PHD filter successfully manages to
remove it.

V. CONCLUSION

In this paper we have presented a fully integrated system
for detecting and tracking pedestrians in a dynamic urban
environment using Velodyne HDL. We have presented a novel
approach to segment the Velodyne HDL scans using a range
image domain. A multi-object tracker based on GM-PHD

Algorithm 1 Velodyne HDL GM-PHD Multi-Object Tracker
• Initialize
At time k = 0, the PHDDk|k is initialized with a weighted sum ofJk Gaussians

Dk|k(x|Zk) =

Jk
∑

j=1

w
[j]
k

N (x;µ
[j]
k

,Σ
[j]
k

)

These are distributed across the state space where each Gaussian term
N (x;µ

[j]
k

,Σ
[j]
k

) has a corresponding weightw[j]
k

, meanµ[j]
k

, and varianceΣ[j]
k

.
At k ≥ 1,
•Segmentation & Blob Extraction
The ROIs are extracted from the Velodyne HDL scan using the segmentation and blob
extraction technique described in Section II. The mean of the range valuesr and their
corresponding bearingsθ of these blobs form the measurement set represented byZk

at timek.
• PHD Time Update
The predicted PHD up to timek is a Gaussian mixture,

Dk|k−1(x) = DS,k|k−1(x) + γk(x)

where,DS,k|k−1(x) is predicted intensity of the existing (survived) objects in the
FOV of Velodyne HDL, given by,

DS,k|k−1(x) = pS

Jk−1
∑

j=1

w
[j]
k−1N (x;µ

[j]

S,k|k−1
,Σ

[j]

S,k|k−1
)

with,

w
[j]

k|k−1
= pS .w

[j]
k−1; µ

[j]

S,k|k−1
= Fk−1µ

[j]
k−1;

Σ
[j]

S,k|k−1
= Qk−1 + Fk−1Σ

[j]
k−1F

T
k−1

and, γk(x) is the PHD representing the new incoming objects in the FOV ofthe
sensor, given by,

γk(x) =

Jγ,k
∑

j=1

w
[j]
γ,k

N (x;µ
[j]
γ,k

,Σ
[j]
γ,k

)

with,

w
[j]

k|k−1
= w

[j]
γ,k

; µ
[j]

k|k−1
= µ

[j]
γ,k

; Σ
[j]

k|k−1
= Σ

[j]
γ,k

• PHD Data Update
The PHD measurement update is a Gaussian mixture given by,

Dk|k(x) = (1 − pD)Dk|k−1(x) +
∑

z∈Zk

DL,k(z|x)

where,

DL,k(z|x) =

Jk−1+Jγ,k
∑

j=1

w
[j]

k|k
N (x;µ

[j]

k|k
,Σ

[j]

k|k
)

with,

w
[j]

k|k
=

pDw
[j]

k|k−1
f
[j]
k

(z|x)

λcck(z) +

Jk−1+Jγ,k
∑

l=1

w
[l]

k|k−1
f
[l]
k

(z|x)

f
[j]
k

(z|x) = N (z;hk(µ
[j]

k|k−1
, 0), S

[j]
k

);

µ
[j]

k|k
= µ

[j]

k|k−1
+ K

[j]
k

[z − hk(µ
[j]

k|k−1
, 0)]; Σ

[j]

k|k
= [I − K

[j]
k

H
[j]
k

]Σ
[j]

k|k−1
;

K
[j]
k

= Σ
[j]

k|k−1
[H

[j]
k

]T [S
[j]
k

]−1;S
[j]
k

= Rk + H
[j]
k

Σ
[j]

k|k−1
[H

[j]
k

]T ;

H
[j]
k

=
∂hk(xk, 0)

∂xk

∣

∣

∣

∣

xk=µ
[j]
k|k−1

Thus, there areJk = (1 + |Zk|)(Jk−1 + Jγ,k) Gaussian components in the
updated PHD with(1 + |Zk|) components for each prediction term at timek and
the Gaussian mixture is of the form,

Dk|k(x) =

Jk
∑

j=1

w
[j]

k|k
N (x;µ

[j]
k

,Σ
[j]
k

)

• Pruning & Merging
In the pruning stage, the Gaussians with weights below a pre-determined threshold
τp, representing the updated PHDDk|k(x) are eliminated.
In the merging stage, the Gaussians whose distance between their means fall below a
specific merging thresholdτm, representing the updated PHDDk|k(x) are merged.
• Object State Estimation
The object states are obtained by selecting the Gaussians that are above a pre-
determined threshold. In addition to these, the Gaussians that have already been
classified as a valid object earlier are also included.
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Fig. 3: Tracks of pedestrians from the GM-PHD filter superimposed on the Velodyne HDL scan. Lines (in green, yellow and
cyan) indicating pedestrian tracks with asterix (in red) indicating the clutter that filter failed to remove at the end ofthe sequence.

filter has been presented that effectively tracks pedestrians
from noisy Velodyne HDL scans. The results demonstrate that
the proposed algorithm successfully estimates and track the
trajectories of the variable number of pedestrians in dynamic
urban environments. The tracking case study presented here
has a relatively good SNR ratio, however, it has been noted that
under high cluttered environments and low SNR, PHD filter
(as any other filter) performs poorly. To mitigate this problem,
alternatives in form of cardinalized PHD (CPHD) filter [5]
have been proposed. Future work will assess the feasibility
of applying CPHD filter to track in environments with higher
clutter.
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