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Abstract—In this paper we describe a fully integrated system  the objects of interest, in this case the pedestrians, i eac
for detecting and tracking pedestrians in a dynamic urban  frame and tracking these detections over time. The major

environment. The system can reliably detect and track pedésans -\ jienge is to estimate the state of an unknown number of
to a range of 100 m in highly cluttered environments. The sysm

uses a highly accurate 3D LIDAR from Velodyne to segment the ~P€destrians, based on the measurements corrupted by noise,
scene into regions of interest or blobs, from which the pedésans in the presence of clutter. The classical approach for sglvi

are determined. The pedestrians are then tracked using prodbil- this problem is to use a stochastic filter such as Kalman
ity hypothesis density (PHD) filter which is based on random fiite filter or it's variants to each object and use a data assoaiati

set theoretic framework. In contrast to classical approacks, this technique such as the nearest neighbor to assign the ajzteopr
random finite set framework does not require any explicit daga

associations. The PHD filter is implemented using a Gaussian Measurement to each filter and track each object separajely [
Mixture technique. Experimental results obtained in dynamic ~ [9]. An alternative and a more elegant approach is to conside
urban settings demonstrate the efficacy and tracking perfomance ~ these unknown number of pedestrians as a multi-object set
of the proposed approach. _ represented by a single meta object and the measurements
Index Terms—Tracking, Velodyne, RFS, PHD filter received by the sensor as a single set of measurements [7]
and modeling them as random finite sets (RFS). This allows
|. INTRODUCTION estimating multiple objects in presence of clutter and with

The ability of unmanned autonomous vehicles to detect angaml association uncertainty to be cast in a Bayesian fieri
ramework.

avoid colliding with objects in their area of operation igical,
especially in cases where they operate in close proximity to There has been extensive research on pedestrian detection
humans. In order to be operational and effective in dynamiand tracking using optical stereo vision [1] and 3D LIDAR
urban environments, these vehicles must be able to detefa], [11], with specific interests towards unmanned autooosm
people and track their motion in uneven terrain with varyingvehicles. In order to reduce false alarm rates, which cargse s
degrees of clutter, occlusion and illumination. Laser sess nificant in cluttered urban landscapes, most of the algmisth
have proven to be efficient and less noisy in comparison wittare usually catered to detecting and tracking moving uprigh
other ranging sensors such as radar and ultrasonic sensgrsdestrians [1], [8]. However, these methods have reported
that provide direct distance measurements. Most laseosens to perform reasonably well in partial occlusion, non-uptig
reported in literature are restricted to two dimensionst th postures and static pedestrians. In this paper we describe
scan along a plane within a limited viewing angle. Mounteda fully integrated system based on RFS for detecting and
parallel to the ground plane, each scan acquires a sequéncetmacking pedestrians using a 3D LIDAR in a dynamic urban
range and bearing measurements. This allows easy detectienvironment. It involves the application of the probaiilit
of objects in the environment by applying straight forwardhypothesis density (PHD) filter, which is a recursion that
signal processing methods. However, objects above or belopropagates the first order statistical moment of the RFS of
the scanning plane cannot be detected. The limited number atates in time, to track multiple objects of interest in prece
measurements thereby complicates classification anditigick of measurement uncertainty and false alarms without any
of objects. Additionally, in uneven terrains, the scannéghth  explicit data association [6]. Due to its ability to handiena
fail to detect objects. Over the last few years, fully three-linear and variable number of targets, it has been applied in
dimensional laser scanners have been introduced. These 3farious fields ranging from tracking multiple moving target
laser scanners use an array of beams organized in multipla uneven terrain [10] to detecting and tracking of undeewat
planes to provide range, bearing and azimuth data of objectsbjects [4], [3], location of targets observed from mukigi-
This allows detection of many kinds of objects, with pedestr static radars [12] and tracking human figures in digital vide
ans in particular, even when the surrounding terrain is enev [14]. Our main contribution in this paper is the adaptation
Thus the pedestrian tracking problem using 3D LIDAR canof the PHD filter based on finite set statistics (FISST) to
be decomposed into two main tasks, namely the detection dhe complex real-world pedestrian tracking scenariosgu3D



scanning LIDAR, with particular emphasis on Velodyne HDL- filter that is based on finite set statistics [6]. Modeling set
64E'. We demonstrate its performance with the data obtainedalued states and measurements as RFS allows the problem
in a natural urban landscape. of estimating multiple unknown of objects to be formulated
The remainder of the paper is structured as follows. Sectiom a Bayesian filtering framework. However, the propagation
Il details the data acquisition from Velodyne HDL along with of the full posterior distribution using the optimal Bayasi
pre-processing steps involved. Section Il reviews thedsas approach is not practical due to computational complety.
of PHD filtering followed by the process and measurementecursive Bayesian approach for approximating the firseiord
models as used in the filter. It also discusses the GM-PHDBtatistical moment of the full posterior distribution knowas
object tracking algorithm using Velodyne HDL. Results,dths the Probability Hypothesis Density (PHD) was proposed By [6
on the experiments conducted are presented in Section I\as a tractable alternative to the optimal Bayes filter. Henev
Section V concludes the paper. the realization of the PHD filter involves multiple integgahat
have no tractable closed form expressions in general. 8eque
tial Monte-Carlo (SMC) [6] and Gaussian mixture (GM) [13]
Our method of object tracking is based on a scan-wisepproximation techniques were devised to implement the PHD
acquisition and processing which is performed in seveegist filter. In this paper, we apply the Gaussian mixture variant t
a scan acquisition from a Velodyne HDL which is a 3D- implement the PHD filter for reliable tracking of the unknown

LIDAR, followed by a segmentation to determine the region ofand varying number of pedestrians as observed by Velodyne
interest (ROI), and finally a GM-PHD filter based pedestrianHpL .

tracker. The Velodyne HDL provides 3D range scans by
rotating an array 064 beams around its vertical axis &t 15 A. The PHD filter
Hz (10 Hz in our application) and producing close to around Let the state of single object at time be represented
1.8 million points per rotation. In the horizontal direstio by xx = {x,Zr, yx, Ur} € F(x), where (zx,y,) are the
the array provides60° field of view (FOV) with an angular object position and(i,yx) the object speed andr(x) is
resolution of approximatel9.09°. Vertically, the pitch angles the single object space. Let the single object measurement
range from—24.8° to +2° with an angular resolution af.4°.  at time k, which is as a result of segmentation and blob
Its range measurement accuracy typically is withicm. The  extraction from a single Velodyne HDL scan be represented
sensor is mounted on top of the platform providing rangescanby z. = {r%,0r} € F(z). The corresponding multi-object
with a full FOV in horizontal direction. states and the multi-object measurements are represested a
finite setsXy = {xk,1, ... Xk, ANdZ, = {2k 1, -, 2k,
which contain states of individual objects and measuresment
The 3D point cloud data from each scan is projected onteespectively’. The PHD filter recursion is a two step process:
a cylinder whose axis is the rotational axis of the Velodyne « PHD time update: Given the process model, the pre-
HDL. This projection yields a range image, whose pixel dicted PHD,

II. VELODYNE DATA PROCESSING

A. Segmentation and Blob Extraction

intensity values correspond to the distance measurements a new objects existing objects
shown in fig. 2a. The bearing and azimuth indexv) in the Dipr (x| 25D = ,'Y—kz)?')+/pS(kal)-fk\kfl(Xk|Xk71)
range image is a direct mapping of the bearing and azimuth

values (0, ¢) from the Velodyne HDL. Fig. 1 shows a 3D Dy1jp—r (xk—1|Z% D )dxi

point cloud of the experimental environment as perceived by @
Velodyne HDL and its corresponding optical image. The range ~ Where,

image is segmented using mean shift segmentation technique ~ — 7 (xx): PHD of the new incoming objects within the
to determine the ROI in the range image. The segmentation Velodyne HDL field of view (FOV)

process mainly comprises of two steps: mean shift filterihg o — ps(xk—1): Probability of an object being re-observed
the original range image data, followed by blob extractibn o « PHD data update: Given a new set of measuremefis
the filtered data points. A result of the blob extraction s the updated PHD,

on the range image is as shown in fig. 2. The mean of the range

(k) _ (k—1)
valuesr, in each blob along with its corresponding bearihg Din(xx[2%) = (1 = pp) Diga—s (1l 27)

in the range image forms a single measuremesnt{r,6}. A + Z pp Dy (z1) Dy (xk|7x)
collection of these measurements form a measuremert, set e Acck(zk) + ppDi(21)
that is used to update the PHD filter, the details of which are (2)
discussed in the following section. where,

I11. TRACKING ALGORITHM DESCRIPTION Dy, (zp) /fk (2 %) D jo— 1(Xk|Z( )dxk (3)

This section describes the method for tracking multiple
unknown number of pedestrians from the Velodyne HDL
in presence of clutter. To achieve this, we use the PHD

fie (2 |%k) Do —1 (x5 25~ 1)

Dy (xk|zx) = Dr ()

(4)

referred to as Velodyne high definition LIDAR (HDL) zx;w- andz ; are denoted as;, andz; for notational simplicity.



Fig. 1: 3D point cloud of the experimental environment ascpmed by Velodyne HDL and its corresponding optical image
(inset). The intensity of the signals are color-mapped wliiker colors representing stronger intensity returns.

I T m-w"‘wwwll

(b) Segmented range image. The red blobs inside the reetamdjtate the output of the segmentation algorithm.

Fig. 2: lllustration of projection of point cloud from a scamfig. 1 to obtain a range image. The result of mean-shift segation
on the range image in (a) results in a segmented range image (b



and, Algorithm 1 Velodyne HDL GM-PHD Multi-Object Tracker
— fr(zk|xk): is the sensor likelihood functioh,, (xx) o Initialize
— )\ average number of false alarms per scan, which Attime k = 0, the PHD Dy, is initialized with a weighted sum of . Gaussians
is assumed to be Poisson distributed

e ) ’_
— ¢x(zp): distribution of each of the false alarms Dy (x|Zx) = > wil N (s !, 2
j=1
B. Implementation of the GM-PHD filter tracker These are distributed across the state space where eachsig@auterm

: . : ) sl ding weight/), 91, and variancezl/.
In this work, we assume that each object moves according o 4 * 2+ ) 15 @ corresponding weighti”, meany.,”, and variances;

to the following Gaussian dynamics i.e., eSegmentation & Blob Extraction
The ROIs are extracted from the Velodyne HDL scan using tgmsetation and blob

1 T 0 0 T2 0 extraction technique described in Section Il. The mean eféimge values and their
% corresponding bearings of these blobs form the measurement set represent&. by
01 0 0 0 V1 k-1 at time k.
Xp = 00 1 T Xp—1+ T2 ’ e PHD Time Update
0 5 V2,k—1 The predicted PHD up to timg is a Gaussian mixture,
00 0 1 A
(5) Dijr—1(x) = Dg gr—1(x) + v&(x)
and the measurement model where, Dg 1 —1(x) is predicted intensity of the existing (survived) objeatsttie
FOV of Velodyne HDL, given by,
. Loo ol e
k= Kk 1,k = . .
0 010 (6) Dg kjk—1(x) = ps Z w,[j],l/\f(x:,u[sj,]k‘k,l-,E[Sf,]k‘,c,l)
j=1
[1 0 0 0]x .
0, = arctan + wa with,
[ 00 10 } Xk 0] [41 l41 (4]
Wiik—1 = PSWE_15 MG 1 = Fr—1pg_y;
Thus, the state and the measurement process can be syccinctl Eg,]k\k—l = Quo1 + Fo 20 FT

described as, . ) N o
and, vx (x) is the PHD representing the new incoming objects in the FO\thef

sensor, given by,
xp = Frpxp_1 + Gpvie—1 (7) given by
Iy k
2y, = hi(Xk, W) (8) ) = 37wl s ], 201 )
j=1

wherev,_; andw;, are assumed to be zero mean Gaussian
process noise and measurement noise with covariagges

and Ry, respectively. The implementation of the GM-PHD wih = ol wiho = e S =2l
multi-object tracker is as proposed in [13]. For compleszne e PHD Data Update

we summarize the key steps of the Velodyne HDL GM-PHD The PHD measurement update is a Gaussian mixture given by,

with,

multi-object tracker in Table 1. Dipje(x) = (1 = pp) Dpjr—1 (x) + D D k(2]%)
z€Zy,
IV. EXPERIMENTS AND RESULTS where
The experiments were conducted in a natural outdoor settin IR RAC LI , .
B i o tng DLaGho= Y wllNesul, 5
at a car-park within the university. Fig. 1 shows a 3D point et
cloud of the experimental environment as perceived by Velo- .,
dyne HDL and its corresponding optical image. The pararaeter B .l
used for the GM-PHD multi-object tracker are as follows. .0 — p]jwk‘igljk (zh)
k—1tJ4 K

The number of Gaussian mixtures in the GM-PHD filter is N+ 3wl PG

limited to Ji|k = 100, with the Gaussian mixture pruning =1
and merging parameters set t9 = 107! and 7, = 4 I GIx) = N (25 ()1, 0), SPD);
respectively. Two sequences demonstrating the perforenainc W=+ K= e o)sP = - kP EP S,

t_he multi-object t_racker based on GM-PHD_ﬂIter are §hown KD = Eg‘]kil[HLﬂ]T[S[kj]rl;S[kj] — R +H}[€j]zg€j‘]k71[Hl[cj]]T;
fig. 3. The PHD filter does generate false estimates at times as " Ohs (0, 0)
observed at the end of the first sequence in fig. 3a. However, if HY = %
the detections are not coherent and consecutive and titerclut

is not persistent, then the PHD filter successfully manages t Thus. there are/i = (1 + |Zx|)(Ji—1 + J 1) Gaussian components in the
updated PHD with(1 + |Z,|) components for each prediction term at tirheand

remove it. the Gaussian mixture is of the form,

_ ]
*k=HE k-1

V. CONCLUSION

In this paper we have presented a fully integrated system
for detecting and tracking pedestrians in a dynamic urban e Pruning & Merging

. . In the pruning stage, the Gaussians with weights below adgtermined threshold
environment using Velodyne HDL. We have presented a novel _ " iesenting the updated PHD, . (x) are eliminated.

approach to segment the Velodyne HDL scans using a range In the merging stage, the Gaussians whose distance betheiemieans fall below a

image domain. A multi-object tracker based on GM-PHD fpggjgitm;;%'gQE;*;{;QT;',?M'fepfese”“"g the updated PHD;, (x) are merged.

The object states are obtained by selecting the Gaussiatsath above a pre-
determined threshold. In addition to these, the Gaussiaas Have already been
classified as a valid object earlier are also included.

I
Dy (x) = > wPh N e !, =)
j=1
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Fig. 3: Tracks of pedestrians from the GM-PHD filter supersgd on the Velodyne HDL scan. Lines (in green, yellow and
cyan) indicating pedestrian tracks with asterix (in red)iéating the clutter that filter failed to remove at the endh& sequence.

filter has been presented that effectively tracks pedestria [8]
from noisy Velodyne HDL scans. The results demonstrate that
the proposed algorithm successfully estimates and traek th [g)
trajectories of the variable number of pedestrians in dyinam
urban environments. The tracking case study presented hel!
has a relatively good SNR ratio, however, it has been notad th
under high cluttered environments and low SNR, PHD filter[11]
(as any other filter) performs poorly. To mitigate this pexhl|
alternatives in form of cardinalized PHD (CPHD) filter [5]
have been proposed. Future work will assess the feasibilitit2]
of applying CPHD filter to track in environments with higher
clutter. [13]
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