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Abstract. We present an algorithm for the generation of coarse 
and fine finite element (FE) meshes on multiply connected sur- 
faces, based on the medial axis transform (MAT). The MAT is 
employed to automatically decompose a complex shape into 
topologically simple subdomains, and to extract important shape 
characteristics and their length scales. Using this technique, we 
can create a coarse subdivision of a complex surface and select 
local element size to generate fine triangular meshes within those 
subregions in an automated manner. Therefore, this approach 
can lead to integration of fully automatic FE mesh generation 
functionality into FE preprocessing systems. 

1 Introduction 

The finite element method (FEM) is a widely used, 
powerful technique in many scientific and engineer- 
ing fields. An ongoing effort is to improve its capa- 
bilities and to make it more readily usable in diverse 
areas. The FEM addresses the solution of the 
boundary value or initial value problems which are 
discretized by means of FE meshes. The discretiza- 
tion of a domain into a set of finite elements is a 
geometrically based process. An automated prepro- 
cessor which creates the FE model by interrogating 
geometry would eliminate manual user intervention 
during the mesh generation process. Such a func- 
tionality is currently lacking, to some extent, in ex- 
isting FE preprocessors. Thus, it would be a very 
useful addition to available finite element analysis 
(FEA) systems. 
In this paper, we present a novel mesh generation 

scheme which comprises two stages: shape interro- 
gation and area meshing. Our mesh generation 
scheme first uses the medial axis transform (MAT) 
[1] as an automatic shape interrogation method to 
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extract global characteristics and topologically sim- 
ple subregions, which are identified in Part II (this 
volume), from a given complex domain. This initial 
shape decomposition can be considered as a coarse 
FE mesh. Those simple subregions are then triangu- 
lated to generate a fine FE mesh. Thus, a mesh 
capturing important geometric characteristics of a 
given domain can be created by our mesh genera- 
tion scheme in an automated manner. Numerous 
case studies of complex and diverse meshing exam- 
ples, which we have performed using our imple- 
mentation, demonstrate the effectiveness of our al- 
gorithm [2,3]. 

The rest of this article is structured as follows. The 
second section presents some geometric aspects of 
FE meshing process and a brief review of existing 
meshing techniques. The third section introduces 
fundamental aspects of MAT and our MAT algo- 
rithm which is the underlying technique used in this 
FE meshing scheme. The fourth section presents 
our FE mesh generation algorithm. Finally, the fifth 
section summarizes this work and points out related 
and outstanding issues for future research. Imple- 
mentation aspects and various engineering applica- 
tions of our meshing algorithm are presented in a 
companion paper [3]. 

2 Automation of Finite Element Modeling and 
Discretization 

In this section, we first introduce several shape 
characteristics which are important in automating 
FE modeling and discretization. We also briefly re- 
view existing FE meshing techniques and identify 
some limitations of those techniques. This section 
serves to motivate our meshing algorithm which au- 
tomatically interrogates and triangulates multiply 
connected surfaces. 
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2.1 Geometric Shape Characteristics Useful for 
Finite Element Modeling 

An automated preprocessor which identifies and ex- 
tracts significant shape characteristics would be a 
very useful addition to currently available FEA sys- 
tems. To make a preprocessor most useful, the fol- 
lowing capabilities are needed: 

�9 Detection of constrictions and their length scales 
in the problem domain allows the implementation 
of physically motivated and more efficient dis- 
cretization of the problem domain. The choice of 
the initial FE mesh topology is an important factor 
from the viewpoint of efficiency. To achieve rap- 
idly convergent results, we usually have to refine 
a FE mesh in regions where the domain is narrow. 
Those regions, for example, are significant from 
the structural analysis viewpoint, because stress 
concentrations usually occur in such areas. In 
fluid dynamics, those regions most likely give rise 
to flow separation. 

�9 Extraction of holes in the problem domain and 
proximity information permits more effective dis- 
cretization of the domain and, would increase the 
accuracy of numerical results. Depending on the 
boundary and load conditions, a finer mesh should 
be used around holes in order to obtain accurate 
results in a FEA. 

�9 Decomposition of a complex shape into a set of 
topologically simple subdomains helps creation 
of FE models in an efficient and automated man- 
ner. 

Detection of the above characteristics from the 
geometric representation provides important infor- 
mation to the FE analysis process. This type of in- 
formation could also lead to the development of 
more automated FE mesh generators. If length 
scales of constrictions and other shape characteris- 
tics of the problem domain are known, a mesh gen- 
erator could be developed to adaptively select ini- 
tial mesh topology and local mesh density. To the 
best of our knowledge, these capabilities are not 
available in existing FE preprocessors. Existing 
preprocessors frequently require interactive user 
input for the specification of significant shape char- 
acteristics, some of which are introduced above. 
With this motivation, we aim to demonstrate the 
feasibility of automation of a complete FE prepro- 
eesser using shape interrogation and geometric al- 
gorithms based on MAT. In this section, we also 
briefly review state-of-the-art technology in FE 
meshing and discuss some limitations of existing 
techniques. 

2.2 Overview of Finite Element Mesh Generation 
Methods 

FE mesh generation is concerned with the subdivi- 
sion of a geometric entity, such as a curve segment, 
a surface patch, or a volume into a set of geometri- 
cally simple shapes referred to as finite elements. 
This subdivision process must be controlled to en- 
sure 

�9 the accurate representation of all significant geo- 
metric characteristics of the problem domain by 
the mesh; 

�9 the proper matching of geometric features be- 
tween finite elements; and, 

�9 that the size and distribution of elements through- 
out the domain being meshed satisfy the require- 
ments specified by the analyst. 

Over the last 25 years, various mesh generation 
schemes have been developed. Detailed reviews on 
existing FE meshing schemes can be found in [21, 
[4], and [5]. None of those techniques has gained 
general applicability for FE meshing of complex ge- 
ometries. One reason is that most existing mesh 
generators require a large amount of interactive 
user input. Another reason is that although some 
mesh generators, in general, create meshes with 
"good"  shape characteristics, they occasionally 
generate meshes of poorly shaped elements or even 
generate an unacceptable mesh in some regions. 
Consequently, automatic FE mesh generation is an 
active research problem in computational geometry 
and CAD. In the authors' opinion there are substan- 
tial opportunities for increased automation, and 
higher process reliability and efficiency. 

We can group existing FE mesh generation 
schemes into two broad classes based on their inter- 
action with the geometric representation of a region 
to be meshed: 

1. the geometric interrogation approach, in which 
mesh generators operate only by interrogating 
the original geometric representation, and 

2. the geometric interrogation and modification ap- 
proach, in which mesh generators operate by 
both interrogating and incrementally modifying 
the geometric and topological representation of 
the region during the meshing process. 

We can also classify existing FE mesh generators 
depending on their underlying algorithmic ap- 
proaches: 

�9 mapping mesh generation [6-12]; 
�9 node insertion followed by area/volume triangula- 

tion [13-201; 
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�9 topology decomposition [21-26]; 
�9 spatial decomposition [27-29]; and 
�9 recursive subdivision of a region to element level 

[30,311 

Mesh generation schemes based on the geometry 
interrogation approach include mapping mesh gen- 
eration and spatial decomposition. Meshing 
schemes using the geometry interrogation and mod- 
ification approach include the techniques of topol- 
ogy decomposition, recursive subdivision, and 
some forms of point insertion followed by area/vol- 
ume triangulation. 

2.3 Summary of Limitations of Existing Meshing 
Techniques 

Although the mapping mesh generation techniques 
are computationally efficient, they cannot handle 
complex and multiply connected domains without a 
substantial amount of user input. Meshing schemes 
based on the node insertion followed by area/vol- 
ume triangulation approach have been studied in 
detail; however, available techniques for generating 
the initial set of nodes are not robust in general. 
Frequently, initial nodes picked can give rise to 
badly shaped elements that require special treat- 
ment to generate an acceptable FE mesh. In these 
meshing methods, the user might be required to in- 
terpret the problem domain, decompose it into ap- 
propriate subdomains and supply mesh gradation 
information. 

Mesh generation schemes using the topology de- 
composition approach are not computationally effi- 
cient for creation of fine FE meshes. These mesh 
generators can create non-two-manifold topologies 
during the meshing of multiply connected regions in 
three dimensions. Thus, they require more complex 
data structures to allow the representation of non- 
two-manifold situations and more complex opera- 
tors that act on such data structures. Mesh genera- 
tors based on the spatial decomposition technique 
can create badly shaped elements close to the 
boundary of the region. The resulting mesh layout 
depends on the position and orientation of the initial 
enclosing box used to generate the uniform grid. 
These mesh generators also need appropriate mesh 
gradation information which is usually provided by 
the user. The mesh generation schemes based on 
the recursive subdivision approach involve compu- 
tationally complex operations during the meshing of 
domains with complex geometry. Existing prepro- 
cessors based on this mesh generation approach, in 
general, require interactive user input in order for 

the meshing process to lead to an acceptable mesh 
of a complex multiply connected domain. 

These observations indicate that available meth- 
ods have, in general, limitations in providing effi- 
cient, reliable and automated solutions to the FE 
mesh generation problem for complex geometries. 
A possible solution to the general FE meshing prob- 
lem may be the development of meshing schemes 
based on a hybrid approach. In such a hybrid 
scheme, topologically simple large portions of a 
complex domain could be extracted and a well 
shaped fine mesh would be generated quickly within 
individual subregions. Thus, an efficient and robust 
mesh generation system could be developed. 

The FE mesh generation algorithm we develop 
here makes use of a two-step approach. The scheme 
first uses the MAT [1] as a shape interrogation 
method to extract global geometric characteristics 
and topologically simple subregions from a given 
complex domain. This initial shape decomposition 
can be considered as a coarse mesh useful for 
p-convergence FEA [3]. Next, those simple subre- 
gions are triangulated to generate a fine mesh for 
h-convergence FEA. Thus, a FE mesh capturing 
important geometric characteristics of a given do- 
main can be efficiently created in an automated 
manner. 

3 Medial Axis Transform 

In this section, we introduce main aspects of the 
MAT and also our algorithm for MAT computation 
for two-dimensional shapes. Such shapes may ei- 
ther be physically planar shapes or represent the 
parameter space of a curved, and generally 
trimmed, parametric surface patch. More detailed 
discussions of these topics and related literature 
surveys on MAT algorithms can be found in [2] and 
[32-34]. 

3.1 Overview of Medial Axis Transform 

Blum [1,35] has proposed the technique of MAT to 
describe biological shape. In this technique, a two- 
dimensional shape is described by using an intrinsic 
coordinate system. Every point p on the plane con- 
taining the shape may be associated with a nearest 
point on the boundary contour B. The Euclidean 
distance from a point p to the boundary set B is the 
distance from p to a nearest point P on B, 

d(p, B) = rnin{d(p, P): P ~ B) (1) 



124 H.N. Gfirsoy and N.M. Patrikalakis 

Such a nearest point exists because our shape is a 
closed subset of the Euclidean space [36]. For a 
particular set of points the minimum distance is not 
achieved uniquely. Such points are equidistant from 
two or more points on the boundary contour. This 
set of points together with the limit points of this set 
constitute the medial axis (MA) or skeleton or sym- 
metric axis of the shape (see Fig. 1). We consider 
here only points in the interior domain bounded by 
B. For example, in Fig. 1 we have the relationship 
for an interior point a, d(a, B) = d(a, b) = d(a, c). 
This definition of the MAT is equivalent to Blum's 
definition of the MAT [35,36]. Blum defines the MA 
of a closed curve B in the Euclidean plane to be the 
set consisting of the centers of all maximal disks 
which fit into the domain bounded by B. The metric 
interpretation of the MA provides a natural basis for 
building a more complete description of the shape. 
On the MA S of a boundary B, we define a function 
r : S ~ R + as follows, where R + is the set of non- 
negative real numbers. For every p E S 

r(p) = d(p, B) (2) 

The function r(p) is called radius function (RF) or 
disk funct ion of MA. According to Blum, shape 
may be described procedurally by means of its MA 
and the associated RF. Namely, given the MA and 
associated RF of a shape, we can exactly recon- 
struct it. It can be shown that given the MA we can 
uniquely recover the original shape by taking the 
union of all disks with radius equal to the RF and 
centered on the MA (see Fig. 1). 

The concept of MA is related to the closest neigh- 
borhood problems in computational geometry [37]. 
Given a set o fn  elements ee (e.g., points) in a region 
R, we can associate every element ei with a particu- 
lar subregion re in which every point is closer to that 
element ee than to all other elements of the set. 
These individual subregions re are referred to as 
Voronoi regions. The region R is the union of all 
Voronoi regions r;. 

The boundaries of the Voronoi regions comprise 
the Voronoi diagram (VD) of the given set. In es- 

Fig. 2. The Voronoi diagram and the medial axis of a planar 
nonconvex shape. 

sence, the VD of a set decomposes the region into a 
finite number of subregions ("influence" regions of 
elements in the set). Construction of the MA can be 
referred to as the solution of the closest boundary 
point problem. The MA of a planar convex polygon 
decomposes it into a set of subregions each of 
which is the nearest neighborhood of a boundary 
edge. Thus, MA and VD are closely related. In the 
case of a convex polygon, they are identical to each 
other. If a polygon is nonconvex, including reen- 
trant corners on its boundary contour, then the VD 
of the polygon is a superset of the associated MA. 
In this case, the difference between the MA and VD 
is that the MA does not include edges of the VD 
incident at the re-entrant corners (see Fig. 2). A re- 
entrant corner of a polygon is a vertex at which the 
internal (material) angle is greater than rr. If the 
angle is less than 7r the corner is called convex 
vertex. 

Using the MAT as a shape interrogation tech- 
nique, we can effectively decompose complex 
shapes into subregions as we present in the sequel. 
Those subregions can be reduced to either four- 
sided or three-sided simple subdomains. This pro- 

B 

Fig. 1. The medial axis transform of a planar shape. 
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cess constitutes the starting phase of our FE mesh- 
ing scheme, in which a complex shape is 
decomposed into coarse subdivisions. 

3.2 A Computational Methodology for the 
Medial Axis Transform 

In this section, we briefly present our methodology 
to compute the MAT of connected planar shapes 
bounded by closed curved boundaries. The bound- 
ary of a region (or shape) is defined by an exterior 
loop and one or more interior loops (i.e., contours), 
if the region of interest is multiply connected. Each 
loop of the boundary is composed of an ordered set 
of boundary elements (curve segments and ver- 
tices). The algorithm developed for the MAT com- 
putation covers straight line, circular arc, and gen- 
eral nonuniform rational B-spline (NURBS) bound- 
ary curves. Our method can also be easily extended 
to compute the MAT of the complement of a planar 
shape bounded by an arbitrary number of loops [2]. 

A loop is a union of a finite number of boundary 
elements which are ordered in such a manner that 
when the loop is traversed in the positive direction 
the interior of the shape lies to the right. An element 
of the boundary is either a reentrant vertex, which 
is associated with material angle greater than ~r, or a 
straight line segment, or a circular arc segment with 
arbitrary radius. Line and circular arc segments are 
bounded by two end vertices. There are also two 
distinct types of circular arc segments. When we 
traverse a boundary loop in the positive direction, if 
a circular arc segment is traversed in the clockwise 
direction with respect to its associated circle it is 
convex. On the other hand, if a circular arc is tra- 
versed in the counterclockwise direction it is con- 
cave. 

In our approach, a free-form boundary curve (e.g., 
a Bezier or B-spline curve) is approximated within a 
prescribed tolerance using these three boundary el- 
ement types [2]. In our algorithm, we use the curve 
approximation technique presented in [38]. Approx- 
imation of a curved boundary in terms of a set of 
straight line segments can give rise to artificial 
branches in MAT computation. Such artificial ef- 
fects can be counteracted by using a threshold tech- 
nique [39]. For this purpose, we use a threshold 
angle which specifies the maximum value of the an- 
gle giving rise to an actual MA branch between two 
adjacent segments [2]. 

If the boundary contour of a planar shape is com- 
posed of reentrant vertices, straight line segments, 
and circular arcs, with arbitrary radii, then the MA 
of this shape, in general, consists of straight line 

segments and arcs of conics (i.e., parabola, ellipse, 
and hyperbola [35]). The MA branch S(ei, ej) of two 
boundary elements e; and ej is the locus of the points 
equidistant from ei and e i. Descriptions of conic 
MA branches and their parametric representations, 
useful for tracing purposes, are presented in [2] and 
[32]. The conic branches of MA can degenerate to 
straight line segments or circles. 

In our computational methodology, we can analyt- 
ically define the MA in terms of conic sections be- 
tween two boundary elements. Determining end 
points on the MA, we obtain the MA branch associ- 
ated with the two boundary elements. For this pur- 
pose, we make use of the fundamental offset pro- 
cess directed towards the interior of a region. This 
process is analogous to propagation of a grass-fire 
wave front towards the interior of a shape. The off- 
set of distance h of the boundary B of a planar re- 
gion R is the envelope of the union of all closed 
circular disks of radius h, the centers of which are 
points of B. This definition accounts for two curves 
on both sides of the boundary, inside and outside. 
We are interested only in the offset of the boundary 
in the interior of the shape. 

Using the sign convention adopted, we observe 
that on an inward offset of the boundary loop, con- 
vex arcs shrink but concave arcs expand compared 
to the initial boundary shape. We also notice that a 
reentrant vertex can be regarded as a degenerate 
case of a concave circular arc with zero radius, be- 
cause such a vertex gives rise to a finite arc segment 
on the offset contour. 

Given the boundary contour of a region, our objec- 
tive for the computation of the MAT is to determine 
inward offset distances and the associated branch 
points at which the topology of the contour 
changes. These are so called effective offset dis- 
tances and effective branch points. Effective branch 
points are the end points of MA branches. 

During the course of the offset process, there are 
three distinct types of branch points [39], (see Fig. 
3). An initial branch point of a contour is a vertex at 
which precisely two nonadjacent elements of the 
offset contour are tangent to each other. An inter- 
mediate branch point of a contour is a vertex to 
which one or more elements of the nonvanishing 
offset shrink. Af inal  branch point of a contour is a 
vertex which represents a vanishing offset contour. 
A final branch point is, in fact, a special case of an 
intermediate branch point and indicates the end of 
the offset process. 

For the computation of intermediate and final 
branch points, the boundary contour is systemati- 
cally analyzed by using triplets of boundary ele- 
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mal branch point 

intermediate branch point 

initial branch point 

Fig. 3. Branch points (adapted from [39]). 

ments. Triplets are a subset of the boundary of a 
region consisting of three adjacent boundary ele- 
ments. 

In this computation, the objective is to determine 
the offset distance at which the middle element of 
the triplet shrinks to a point. That point is the inter- 
mediate branch point of the triplet. This point is 
determined by computing the intersection of the 
two MA branches generated by the triplets. This 
intersection problem may be classified in one of the 
following types: 

1. straight line to straight line intersection; 
2. straight line to conic intersection; and 
3. conic to conic intersection. 

An analytical solution of these problems is investi- 
gated in [32] and [2]. For the computation of inter- 
mediate branch points, there is a special case which 
does not involve triplets. A convex circular arc seg- 
ment on the contour collapses to its center point 
when the inward offset of the contour has a distance 
equal to the radius of the circle. Hence, for such a 
case, the center of the circular arc corresponds to 
an intermediate branch point. 

The computation of initial branch points involves 
the computation of a tangent intersection point be- 
tween two segments, at least one of them being a 

circular arc. An analytical solution for such inter- 
sections is again presented in [32] and [2]. 

From the solution of intersection problems dis- 
cussed above, we obtain a set of potential branch 
points and offset distances associated with them. 
The following criteria are used to identify admissi- 
ble branch points.  An admissible branch point p is a 
branch point associated with triplets (ei, e i, e~) or 
two nonadjacent boundary elements (eq, er) which 
is within the interior of the region R and at an equal 
distance h from those boundary elements. An ad- 
missible branch point must also satisfy the condi- 
tion that there is not boundary element at a distance 
less than the offset distance associated with the 
branch point. 

p E R (5) 

h = d(p, el) = d(p, ej) = d(p, ek) or (6a) 

h = d(p, eq) = d(p, er) (6b) 

d(p, en) >- h(n = 1 . . . . .  N)  (7) 

where N is the number of boundary elements. 
Once all admissible branch points are computed, 

then effective branch points and associated effec- 
tive offset distance H of the boundary contour are 
determined from the set of admissible branch 
points. For a given boundary contour or its offset 
the set of effective branch points is determined by 
the minimum value of the offset distance associated 
with admissible branch points. 

H = rain{hi . . . . .  hm} (8) 

where hi denotes offset distance associated with an 
admissible branch point pi and m is the number of 
admissible branch points. 

3.3 Medial  Axis  Transform as a Shape 
Decomposi t ion  Technique 

We should note that from the offset process we ob- 
tain branch points of the MA and also values of the 
RF, namely offset distances at those branch points. 
The branch points and convex vertices of the 
boundary contours denote the end vertices of indi- 
vidual MA branches. Then we can define the RF 
associated with every MA branch in a continuous 
form as a function of offset distance or in a discrete 
sense as offset distance at distinct points on the MA 
branch. 

MA branches and the initial boundary contour de- 
compose a shape into a set of subregions (i.e., 
Voronoi regions). If the given shape is convex, 
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Fig. 4. Decomposition of a nonconvex shape into simple subdo- 
mains. 

those resulting subregions are also convex. For a 
nonconvex shape, some subregions are not convex. 
Introducing Voronoi edges and cuts at initial branch 
points as shown in Fig. 4, we can further subdivide 
such nonconvex subregions to obtain convex or 
pseudo-convex subregions. Voronoi edges of a 
given VD are the edges that are incident at re-en- 
trant corners andflat vertices of the boundary con- 
tour of a planar shape. A fiat vertex of a boundary 
contour of a planar shape is a junction point of two 
adjacent boundary elements at which the interior 
angle is equal to ~r. A cut at an initial branch point is 
a straight line segment connecting two nonadjacent 
boundary elements across the initial branch point 
and orthogonal to these boundary elements. A 
pseudo-convex region is an area whose closed 
boundary can be offset until the area becomes nil 
without splitting the area into separate components. 
A pseudo-convex region involves no narrow bottle- 
neck type part, and the RF's associated with MA 
branches have no local minima other than the end 
points of the MA branches that generated the 
region. 

As shown in Fig. 4, subregions can be further di- 
vided into topologically simple subdomains using a 
set of straight line segments which are indicated by 
the dotted lines in this figure. These lines are gener- 
ated by projecting the branch points onto the 
boundary elements associated with the branch 
points. The resulting subdomains are either three- 
sided or four-sided subdomains. 

3.4 An Algorithm for the Medial Axis Transform 

Our computational methodology summarized in this 
section has led to an algorithm for MAT computa- 
tion, whose pseudo-code is given below (see Algo- 
rithm 1). In our algorithm, boundary elements are 
treated independently to compute branch points. 
Then the effective offset distance and branch points 

are determined using the set of branch points deter- 
mined in this computation. We note that a contour 
may be associated with more than one effective 
branch point, though their effective offset distance 
must be the same. In the MAT computation, a con- 
tour may create more than one contour during the 
offset process, depending on the geometry of the 
contour. The MAT computation results in a set of 
Voronoi regions decomposing the shape. The Voro- 
noi regions are represented as faces in a boundary 
representation (B-Rep) model. The MA branches, 
Voronoi edges, and boundary elements are the 
bounding edges of the Voronoi regions. Discussion 
of data structures and representation techniques 
used in our algorithm and other implementation as- 
pects of this scheme can be found in [2], [34], and 
[3]. 

4 An Automatic Mesh Generation Algorithm 
Based on the Medial Axis Transform 

In this section, we present an automatic mesh gen- 
eration scheme for multiply connected planar 
shapes based on the MAT, see also [2] for a more 
detailed description. Our algorithm is similar to the 
one proposed in [40] for polygonal domains. Our 
mesh generation scheme can, however, directly 
handle shapes with curved boundaries. This mesh- 
ing process requires little user input or manual in- 
tervention, since it uses the MAT to automatically 
interrogate the geometric representation. There- 
fore, such a meshing scheme may prove to be a 
useful tool in design and analysis of complex engi- 
neering structures. 

We first introduce fundamental aspects of a gen- 
eral two-step area meshing process. After that we 
present our methodology and meshing algorithm 
which incorporates the MAT with the FE mesh gen- 
eration process. 

4.I A General Two-Step Finite Element 
Triangulation Scheme 

We present basic aspects of a two-step mesh gener- 
ation process to obtain a two-dimensional triangular 
mesh. Theoretically, this process could be extended 
in an analogous way to three-dimensional cases us- 
ing tetrahedra to discretize volumes. This approach 
is hybrid in the sense that it involves two distinct 
processes during finite element mesh generation. 
The first process decomposes the two-dimensional 
domain to be meshed into a set of topologically sim- 
ple subdomains. 
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Algorithm 1: Medial Axis Transform 

input: Data of boundary contours (loops) of a region and threshold angle (TA). 

output: List of medial axis (MA) branches, radius function, and list of Voronoi regions. 

begin 

Put initial contour(s) into contour queue; 

while there is contour existing in contour queue { 
Get a contour from contour queue as current contour; 
/f interior of current contour is not nil { 

for each segment, other than artificial ones { 
Compute admissible intermediate branch point (BP); 
if segment is a concave circular arc 

Compute admissible initial BP(s); 
Put BP(s) into admissible BP list; 

} 
Determine effective BP(s) using admissible BP list; 
Determine offset distance using an effective BP; 
for every convex vertex on current contour { 

/f material angle of convex vertex -< TA { 
Compute segment of MA branch (S); 
Put S into MA branch list; 

} 
} 
if effective BP is final 

Stop computation for current contour; 
else { 

Compute new offset contour(s); 
Put new contour(s) into contour queue; 

} 
} 
else { 

Compute MA branches of nil contour; 
Put MA branches into MA branch list; 

} 

Construct list for Voronoi regions; 

end 

for every boundary element of initial contour(s) { 
Create Voronoi region using MA branches; 
Put Voronoi region into list; 

) 

A simple subdomain in a simply connected convex 
or pseudo-convex region with one boundary loop 
which is composed of a sequence of either three or 
four edges. The second process triangulates individ- 
ual simple subdomains generated by the first pro- 

cess. Thus a triangular mesh of the domain is ob- 
tained by taking the union of all triangulated 
subdomains. 

The mesh generator as input requires the geome- 
try of a region R to be discretized as its input. This 
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input is usually in a B-Rep form which can be di- 
rectly obtained from a B-Rep model or derived from 
a constructive solid geometry (CSG) representation 
by means of boundary evaluation. 

Then initialization of discretization begins. A com- 
plex shape with reentrant corners and multiple in- 
ternal holes is decomposed into simpler subdomains 
so that an admissible mesh with triangular elements 
of good shape characteristics can be generated. As 
a heuristic rule we require all triangular elements to 
approximately be equilateral triangles. The result of 
the decomposition process is a set of n convex or 
pseudo-convex subdomains ri whose union is the 
original shape R. 

The subdomains generated in the previous decom- 
positions process are organized into an appropriate 
data structure for meshing. This representation con- 
tains adjacency information among all subdomains 
so that the triangular elements generated in adjacent 
subdomains satisfy compatibility requirements. In 
an admissible FE mesh composed of compatible el- 
ements, two adjacent elements share all nodes on 
the interface edge. 

After the region is decomposed into a set of subdo- 
mains, each subdomain can be triangulated individ- 
ually 

Ti = tz(ri) (9) 

where the function /z(r;) embeds a triangular FE 
mesh Ti in subregion ri. These subdomains can be 
regarded as super finite elements from the FE dis- 
cretization point of view. An approach for the trian- 
gulation of a simple subdomain can be based on 
discretization of the boundary of the subdomain fol- 
lowed by triangulation of the interior. The discreti- 
zation of the boundary requires specification of 
mesh size and density. The discretization of the 
subdomain boundaries also assures compatibility 
between adjacent elements in different subdomains. 
The FE mesh T of the region R is the union of all FE 
meshes Ti embedded in all subdomains r~. 

T = U~_l Ti (10) 

It is worth noting that other mesh generation 
schemes (such as mapping, recursive decomposi- 
tion, and point insertion followed by triangulation 
techniques) can also be used to discretize these in- 
dividual simple subdomains. 

Automatic triangulation of a complex shape may 
generate finite elements with unfavorable shape 
properties. Regions with highly nonuniform shape 
characteristics, closely spaced holes, wavy bound- 

aries, etc can give rise to very irregular meshes. It is 
common practice to apply smoothing to the mesh 
generated by triangulation in order to improve irreg- 
ular shapes. Various schemes are available for the 
mesh smoothing process such as Laplacian and iso- 
parametric methods [9]. Our smoothing technique 
to satisfy this objective is an iterative process in 
which the position of an interior node is incremen- 
tally changed by averaging its coordinates and the 
coordinates of all adjacent nodes. 

Depending on the problem at hand, a FE discreti- 
zation may need local refinement in order to im- 
prove numerical results. Before the first FEA, a 
coarse mesh should be locally refined in regions 
close to boundary segments associated with bound- 
ary conditions such as fixed nodes, concentrated 
loads, and also singularities arising from fixed and 
reentrant corners. Also in an adaptive FEA using 
a posteriori error indicators [41], finite elements 
which give rise to large error should be refined in 
order to obtain better numerical results in subse- 
quent analysis steps. For local refinement based on 
the h-convergence approach, triangular elements 
can be bisected across their longest edge. This 
method allows generation of compatible meshes, 
and at the same time does not degrade the shape 
characteristics of triangular elements. The follow- 
ing pseudo-code summarizes the main steps in- 
volved in this two-step finite element mesh genera- 
tion process (see Algorithm 2). 

4.2 The Finite Element Mesh Generation 
Scheme Based on the Medial Axis Transform 

Using the two-step meshing methodology intro- 
duced in the previous section, we have developed a 
meshing scheme based on the MAT, which auto- 
matically discretizes a two-dimensional shape into a 
set of triangular elements. This meshing scheme ac- 
cepts the MAT of a shape as its input and generates 
complete FE mesh information. Major steps of this 
scheme are presented in the following sections. 

4.2.1 Decomposition o f  a region by means o f  the 
medial axis transform 

Due to the nature of the MAT, every boundary ele- 
ment is associated with a unique Voronoi region of 
the shape. We can subdivide a Voronoi region into 
simple subdomains in such a way that a portion of 
the boundary element is associated with only one 
MA branch on the boundary of the Voronoi region. 
Thus, we obtain a coarse discretization of the 
shape. Such a coarse discretization can be effec- 
tively used as a FE mesh in a p-version FEA. An- 
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input: 
output: 
begin 

end 

Algorithm 2: A General Two-Step Finite Element Meshing Scheme 

Boundary representation model of a domain to be meshed. 
Finite element mesh composed of triangles. 

Decompose domain into topologically simple subdomains; 
Generate nodes along boundaries of subdomains; 
for each subdomain 

Create a triangular finite element mesh; 
for each subdomain 

/f refinement is required 
Refine mesh of subdomain without violating compatibility; 

if shape characteristics of mesh are not good enough 
Smooth mesh; 

other possible application of this approach is that 
we can easily identify subdomains associated with 
significant boundary conditions. Thus we determine 
areas for local mesh refinement in a direct and effi- 
cient manner. As a result, this meshing scheme di- 
rectly yields discretizations with a spatial addressa- 
bility property. Such a feature is very useful for 
adaptive FEA methods. 

Given a Voronoi region, the region can be further 
subdivided so that each MA branch on the perime- 
ter of the Voronoi region can be mapped onto a 
unique finite portion of the boundary element asso- 
ciated with the Voronoi region. The mapping is 
done by means of a projection process. In a degen- 
erate case, if the boundary element is a reentrant 
corner, all MA branches of the Voronoi region asso- 
ciated with this vertex are mapped onto this vertex. 

The segmentation of the boundary is carried out 
by computing the projections of the end points of 
MA branches (i.e. branch points) onto the boundary 
element associated with those branches, (see Fig. 
5). This decomposition process results in a set of 
subdomains with simple topology. These subdo- 
mains are either three- or four-sided subdomains, 
(see Fig. 5). Three-sided subdomains arise at termi- 
nal branches of the MA and, possibly, at reentrant 
(nonconvex) vertices (see Figs. 4 and 5). If a poten- 
tial three-sided subdomain is very narrow, (i.e., 
with a small acute angle), this subdomain is not gen- 
erated and the adjacent four-sided subdomain is 
merged with this three-sided subdomain. Four- 
sided subdomains arise for all other branches of the 
MA. Such a decomposition process also allows us 
to effectively use local lengths scales of a shape. In 
this work, we use the largest value of the radius 
function for a given subdomain as the local length 
scale associated with that subdomain. This informa- 
tion, in turn, is used to determine the length dimen- 

sion of triangular finite elements discretizing the 
subdomain. We also make use of the value of radius 
function at initial branch points to determine the 
local length scale of constriction. 

4.2.2 Processing of  the subdomains obtained fi'om 
the medial axis transform 

The MAT based process of the previous section 
decomposes a complex shape into a set of topologi- 
cally simple three- or four-sided subdomains. Al- 
though these subdomains are topologically simple, 
the lengths of their edges may, sometimes, turn out 
to vary significantly. For example, very narrow 
subdomains involving angles which are very differ- 

Fig. 5. Shape decomposition by means of the medial axis trans- 
form. 
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ent from rr/3 may be occasionally generated. Pres- 
ence of such badly shaped subdomains makes it dif- 
ficult to create a FE discretization composed of 
triangles with good shape characteristics. As a rule, 
we require that all triangular elements closely re- 
semble equilateral triangles. Although we do not 
use quadrilateral elements in our meshing scheme, 
the optimum quadrilateral element shape is the 
square. The objective of these heuristic rules is that 
a well shaped finite element does not have a bias 
towards a particular direction in a FE mesh layout. 
Such a requirement can be expressed in terms the 
aspect ratios of elements. A measure of aspect ratio 
may be defined using the MA and radius function of 
a triangular element. The aspect ratio (AR) defined 
as the ratio o f  length o f  longest MA branch to the 
maximum value o f  the radius function also effec- 
tively accounts for skewness of elements. 

We illustrate these abnormalities involved in 
shape decomposition based on the MAT using a 
simple shape. Figure 6 shows a rectangle whose 
longer dimension D is a variable and the shorter 
dimension is constant, d = 2a. In Fig. 7, corre- 
sponding to D = 2a, (i.e. a square), the solid line is 
the MA of the rectangle and dotted lines represent 
discretization of the region in terms of triangular 
elements. Here we observe that the triangular ele- 
ments exhibit good shape characteristics. The as- 
pect ratio of the triangles is V~. If we start to in- 
crease D, the MAT decomposition will give rise to 
two very narrow subdomains. If2a < D < 5a/2, the 
discretization of those subdomains produces trian- 
gles with poor shape characteristics (i.e., AR > 
2.24, see Fig. 8). In Fig. 8, triangulation of the rec- 
tangular domain is carried out using our mesh gen- 
eration method presented in the subsequent sec- 

d = 2 a  

F- x~ . / 1 '  

x ~  / D  

_A 

D = d  

Fig. 7. Finite element mesh of the parametric shape. 

tions. For the time being, let us consider only shape 
characteristics of these triangular elements. We can 
identify a situation which gives rise to badly shaped 
elements using the ratio, R, of the length of associ- 
ated MA branch to the maximum value of radius 
function, in this particular case 0 -< R < �89 To rec- 
tify this abnormality, the short MA branch needs to 
be processed. For example, as seen in Fig. 9, we 
can construct an approximate MA by eliminating 
the short MA branch, and obtain a modified decom- 
position. In this example, the triangle is of aspect 
ratio AR = 1.6 which is better than the previous 
value. 

Short boundary elements and re-entrant vertices 
with angles only slightly above 7r also give rise to 
very narrow triangular Voronoi regions, (see Figs. 
10 and 11). Such cases arise frequently for high ac- 
curacy approximations of a curved shape with lin- 
ear segments. For the narrow subregion due to 

d - 2 a  
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L L !  

d -  2a 

n 

s j I f 
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D - 5 a  

j = 2 . 2 4  

Fig. 6. A simple parametric shape. Fig. 8. Finite elements with high aspect ratios, 
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. f  I . . . . .  

Fig. 9. Modified medial axis and associated discretization. 
Fig. 11. A narrow subregion associated with a re-entrant vertex. 

short boundary elements, we can modify the MA 
branches associated with the subregion so that the 
triangle becomes almost equilateral (see Fig. 10). In 
this process, the apex of the triangular subregion is 
moved towards the boundary element until the as- 
pect ratio of the triangle reaches an acceptable 
value such as 3. In the case of a narrow subregion 
associated with a re-entrant vertex, it is possible to 
completely eliminate such a subregion from the de- 
composition. As seen in Fig. 11, the narrow triangu- 
lar subregion is shrunk to a line segment connecting 
the initial branch point to the re-entrant vertex. 

Based on these observations, we can carry out the 
following operations to rectify or eliminate subdo- 
mains with unacceptable shape characteristics for 
FE mesh generation purposes: 

�9 Given the Voronoi decomposition of a shape, we 
first determine the ratio, R, of the lengths of the 
MA branches bounding the region with the associ- 
ated maximum radius function value, and identify 
Voronoi regions with small value of R (e.g. R < k). 

�9 If a MA branch with a small value of the ratio R is 
connected at its one end to a terminal branch, 
these two branches can be merged together. 

�9 If a short branch has more than one adjacent 
branch at each of its two ends, the branch is elimi- 

nated using a process illustrated in Fig. 12. This 
process is analogous to the "kill-edge-vertex" to- 
pology operator which is used to manipulate two- 
manifold boundary models [42]. In this case, first 
new vertices A, B, C, and D are inserted on adja- 
cent MA branches at distances equal to a fraction 
of the local length scale value and away from the 
branch points. Then adjacent branches are modi- 
fied by creating a new segment on each of these 
adjacent branches. A new straight line segment on 
a MA branch is defined by connecting the new 
vertex (e.g. A, B, C, and D) to the middle point, 
M, of the short branch. Since this modification 
process makes use of local length scale informa- 
tion, it can be made robust enough so that no in- 
tersections occur between new segments and 
other boundary elements of the shape. Although 
this process introduces an approximate represen- 
tation of the MA, such approximations are accept- 
able for FE mesh generation purposes. 
If an abnormal subregion is associated with a 
boundary element, its bounding edges are modi- 
fied so that the subregion becomes more uniform 
as shown in Fig. 10. Here an aspect ratio value 
AR -< 3 can be used as a criterion for this modifi- 
cation process. 
If an abnormal triangular subregion is associated 

//i 

J 

VR 2 VR2 

Fig. 10. A narrow subregion and its modification. 
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Fig. 12. Elimination of a short branch. 

with a reentrant vertex, the subregion is removed 
from the decomposition and the MA branches ad- 
jacent to the subregion are modified, as shown in 
Fig. 11. 

This processing of a Voronoi decomposition at- 
tempts to eliminate poorly shaped subdomains of 
the decomposition by merging a portion or whole 
part of an irregular subdomain with other adjacent 
subdomains. After these processes, the resulting 
decomposition is expected to allow us to generate a 
mesh with desirable shape characteristics. 

4.2.3 Discretization of  boundaries and interiors of  
subdomains 

Once we process and subdivide Voronoi regions, 
we obtain a set of subdomains. We can discretize 
bounding edges of subdomains, except their bound- 
ary elements, by generating nodes along those 
edges. During this automatic node insertion pro- 
cess, a fraction of the value of radius function is 
used as distance between inserted nodes. Since 
these inserted nodes are shared by adjacent subdo- 
mains, the final mesh will satisfy compatibility re- 
quirements between adjacent elements generated in 
different subdomains. 

Next we further subdivide individual subdomains 
into a set of quadrilateral strips. In degenerate 
cases, a quadrilateral strip becomes a single triangle 
which appears within triangular subdomains. In this 
process, a set of nodal points is specified on every 
boundary element associated with a subdomain. 
Nodal points on the MA branch edges of a subdo- 
main are mapped onto the boundary element of the 
subdomain. This process can be regarded as a dis- 
crete dual of the MAT. Namely, in the MAT com- 
putation, we determine the MA branch of two 
boundary elements which is the set of points equi- 
distant from those elements. On the other hand, in 
subregion discretization, we determine points on 
the boundary elements corresponding to points of 
the MA branch. Every point on a MA branch not 
associated with a reentrant vertex can be mapped 

onto a unique point of each boundary element asso- 
ciated with that MA branch. 

In this mapping, a point on the MA branch is pro- 
jected onto an associated boundary element. In a 
degenerate case where a boundary element is a re- 
entrant corner, then this mapping would result in 
that corner vertex for every point on the MA branch 
associated with the reentrant vertex. After this 
mapping, we obtain a set of points on each bound- 
ary edge and perpendicular segments connecting 
them to the corresponding points on the MA branch 
of the subdomain. Thus a set of quadrilateral strips 
are embedded into the subdomain. These quadrilat- 
eral strips have two edges orthogonal to the bound- 
ary element of the subdomain (see Fig. 13). Trian- 
gular elements are easily generated within such 
simple quadrilateral strips. If the subdomain is tri- 
angular, at most two triangular strips (they can be 
considered as individual elements) are also created 
in addition to a set of quadrilateral strips (see Fig. 
13). 

4.2.4 Triangulation of subdomains and area 
meshing 

In the previous section we introduced a technique 
to discretize the boundaries and the interior of a 
subdomain. The quadrilateral strips generated by 
the mapping have two edges which are orthogonal 
to boundary elements of the subdomain. If there 
are, for example, n nodal points inserted along the 
MA branch, then (n - 1) strips will be generated 
after the mapping process. New nodal points with 
uniform spacing can be inserted along the edges of 
these strips by interpolating the number of nodes 
along the subdomain (see Fig. 14). Node numbers 
on individual strip edges orthogonal to the bound- 
ary may be determined by using the following quasi- 
linear interpolation equation: 

[i l - k ]  
N ~ = k + |  n_ l l O < i < n -  I (11) 

strips strips 

Fig. 13. Strips created in quadrilateral and triangular subdo- 
mains. 
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Fig. 14. Node generation procedure within a subdomain. 

where N; is the number of nodes on the ith edge 
connecting a point on the boundary element to a 
corresponding point on the branch at integer posi- 
tion i in the point sequence; k and l are the numbers 
of nodes on the extreme oblique edges of the subdo- 
main; n is the number of nodes on the MA branch; 
and [ ] denotes ceiling. In Fig. 14, the left and right 
"vertical" edges are oblique to the bottom edge be- 
cause of merging two triangular subdomains with 
high aspect ratio with this quadrilateral subdomain. 

After inserting all nodes along the edges of the 
strips of a subdomain, triangulation of a subdomain 
can be carried out by triangulating individual strips. 
If the subdomain is triangular it can be transformed 
to a quadrilateral by removing a triangular element 
(which is the degenerate strip of this subdomain) 
from the subdomain. Triangulation of the quadrilat- 
eral strips is a relatively straightforward process 
which involves matching of appropriate nodes on 
two opposite edges of the strip. Several techniques 
have also been proposed for triangulation of such 
strips [10]. The edges of the strips are perpendicular 
to boundary elements of the subdomain. For a given 
strip, the four corner vertices are interrogated to 
determine the one associated with the largest inte- 
rior angle. Once this vertex is identified, it is con- 
nected to an appropriate vertex on the other edge of 
the strip such that a triangular element is extracted 
from the strip at the end of this process (see Fig. 
17). Then, this process is applied to the remaining 
part of the strip. Thus a set of triangles are gener- 
ated by removing triangles from the strip one at a 
time. In our current implementation, the difference 
of node numbers on opposite edges of a strip is as 
large as 3 but could easily be modified to other val- 
ues. 

The triangulation process we use in discretization 
of individual subdomains is an efficient and robust 
technique. Our meshing algorithm, however, is not 
limited only to this scheme. We could effectively 
use other triangulation methods (e.g. Delaunay tri- 
angulation [16]). In such an approach, we could de- 
fine a individual subdomain using MA branches and 
boundary element associated with the subdomain. 
In that triangulation process, nodes on the bound- 
ary and in the interior of the subdomain would be 
"injected" into the mesh one at a time. In this case, 
the meshing scheme based on our shape decomposi- 
tion approach would also result in better computa- 
tional efficiency, since we break down the overall 
triangulation task into a set of smaller tasks. In the 
meshing process, the triangulation of a set of subdo- 
mains with a small fraction of the total number of 
nodes could be carried out more efficiently than the 
triangulation of the whole domain using all nodes. 

After all subdomains of a shape are triangulated, 
mesh smoothing and local refinement processes can 
be applied to the resulting mesh in order to improve 
its shape characteristics. The following pseudo- 
code summarizes the main steps involved in our 
finite element mesh generation process based on 
MAT (see Algorithm 3). Data structures used and 
techniques developed for these processes are re- 
ported in [3]. 

Figures 15 through 18 illustrate the steps involved 
in our FE mesh generation scheme. Figure 15 illus- 
trates the MA of the multiply connected planar 
shape. Subdivision of the region and nodes inserted 
along the edges of the subdomains are illustrated in 
Fig. 16. Figure 17 shows the triangulation process 
within a subdomain. Finally, the resulting mesh is 
shown in Fig. 18. 

Fig. 15. A planar multiply connected shape and its medial axis. 

Fig. 16. Region subdivision and boundary discretization. 
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input: 
output: 
begin 

end 

Algorithm 3: A Two-Step FE Meshing Based on Medial Axis Transform 

Data of boundary contour(s) of a region. 
List of triangular finite elements. 

Construct medial axis, list of Voronoi regions using Algorithm 1; 
Create list for simple subdomains; 
for each three sided Voronoi region 

Add region into subdomain list; 
for each remaining Voronoi region { 

Subdivide region into three four-sided subdomains; 
Add subdomains into subdomain list; 

} 
for each edge between adjacent subdomains 

Generate uniformly distributed nodes; 
Create list for triangular elements; 
for each subdomain in list { 

/f subdomain is four sided { 
Generate set of quadrilateral strips; 
Triangulate strips in quadrilateral subdomain; 

} 
tf subdomain is three sided { 

Generate set of strips; 
Convert triangular subdomain into quadrilateral by extracting one 

degenerate triangular strip as a triangular element; 
Triangulate strips in remaining quadrilateral subdomain; 

} 
Add triangles into list; 

} 
/f shape of triangular elements requires improvement 

Smooth mesh; 

4.3 Complexity Estimates of the Medial Axis 
Transform and Meshing Processes 

A basic complexi ty analysis of our MAT algorithm 
follows. We need to consider all O(n 2) pairs of 
boundary elements to determine points of closest 

f 
stops 

Sh 
- . v 

Fig. 17. Triangulation of an individual subdomain. 

approach. Then all such points which pass local 
tests of being possible initial branch points, must be 
checked against all other  boundary elements O(n) to 
determine if they are admissible (i.e. not closer to 
any other  elements).  At worst,  therefore,  the time 
complexity is O(n3). This estimate assumes that lo- 
cal tests for possible initial branch points do not 
reduce the order  of magnitude of the number  of  
such points. Experiments  indicate that this is an 
overly pessimistic assumption. 

The coarse triangular mesh generation process is 

\\// 4///!/ 

\ / / /  < / /  

Fig. 18. Finite element mesh of a planar multiply connected re- 
gion. 
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an O(m) process with respect to the total number of 
triangular elements, m, being generated. Triangula- 
tion of individual subdomains has a linear time com- 
plexity with respect to the number of elements gen- 
erated. The reason is that our meshing scheme is 
geometrically based and no search operations are 
carried out during the meshing process as, for ex- 
ample, in topologically based schemes. Thus this 
approach gives rise to a linear running time com- 
plexity. 

Considering the overall performance of our imple- 
mentation, the overhead involved in our MAT algo- 
rithm is subdominant with respect to the mesh crea- 
tion and refinement time complexity. In a typical 
mesh generation problem n ~ m and therefore the 
bulk of the computational effort is spent for actual 
mesh generation and refinement processes, which 
exhibit a linear time complexity. Timing results of 
several test cases obtained using our computer im- 
plementation confirm these observations [2,3]. 

5 Summary and Conclusions 

We have presented the MAT as a shape interroga- 
tion method and an algorithm to compute the MA of 
two-dimensional shapes with curved boundaries. 
The two-dimensional shape can either be planar ob- 
jects or the parameter space of a curved trimmed 
surface patch. For the latter case, mapping of the 
MA to three-dimensional space via the surface 
equation allows surface discretization. This scheme 
can effectively extract several important shape 
characteristics in an automated manner. We have 
also presented a new FE mesh generation scheme 
based on MAT. Several important advantages of 
this scheme include the capability to extract shape 
characteristics and length scales in a fully auto- 
mated manner, a direct way of defining super finite 
elements and a substructuring capability, and spa- 
tial addressability of resulting discretizations cre- 
ated by the scheme. 

Extension of these techniques to higher dimen- 
sions (MAT on curved surfaces and within three- 
dimensional volumes) is feasible [2,43]. However, 
such extension is expected to be computationally 
intensive due to substantial increases in combinato- 
rial and algebraic complexity of the process in 
higher dimensions. 

MAT computations on general curved surfaces us- 
ing an appropriate distance metric would require 
geodesics. MAT of general three-dimensional 
closed volumes is an active research problem. In 
addition to the computational complexity of the 

MAT in this case, the MA of an object in three 
dimensions, in general, involves mixed dimensional 
entities (such a MA generally comprises connected 
distinct vertices, curved edge segments, and sur- 
face patches as MA branches). Thus, representa- 
tion of such a complex structure within a volume 
would require sophisticated B-Rep techniques ca- 
pable of handling non-two-manifold situations [44- 
46]. 

Even though there are major difficulties in MAT 
computation in higher dimensions, MAT is a very 
rich topic involving interesting research problems. 
This technique promises elegant solutions to many 
potential applications in engineering design and 
analysis [2,34]. 
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