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B-REP MODEL RECTIFICATION

Abstract

Defects in boundary representation models often lead to system errors in modeling soft-
ware and associated applications. This paper analyzes the model rectification problem of
manifold boundary models, and argues that a rectify-by-reconstruction approach is needed
in order to reach the global optimal solution. The restricted face boundary reconstruction
problem is shown to be NP-hard. Based on this, the solid boundary reconstruction problem

is also shown to be NP-hard.
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1 Introduction

Model representations of products enable man-machine and machine-machine communica-
tion. With rules set by representation schemes, models can be realized as physical artifacts.
However, such realization often fails whenever models contradict rules and ambiguities arise.
This is especially true for manifold boundary representation (B-rep) as its validity is not
self-guaranteed [1, 2, 3, 4]. In an earlier paper, we have identified sufficient conditions
for validity of manifold B-rep models [5]. Defects in B-rep models are those representa-
tional features that do not conform to constraints set by modeling schemes. Such defects

are topological and geometric errors, and visually appear as gaps, dangling faces, internal
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walls and inconsistent orientations. Defects may cause failures of modeling systems and
applications because operations are typically designed with the assumption of model valid-
ity. Model rectification, a process that repairs defects, is essential to the success of design

and manufacturing defect-free products in an integrated CAD/CAM environment.

Research on model rectification has been done mainly on triangulated models, specifically,
STL models for rapid prototyping. STL models represent solids using oriented triangles [6].
Defects in STL models are gaps due to missing triangles, inconsistently oriented triangles,
inappropriate intersections in the interiors of triangles. Most algorithms [7, 8] identify
erroneous triangle edges, string such edges to form hole boundaries, and then fill holes
with triangles. As pointed out in [7], topological ambiguities are resolved by intuitive
heuristics. These algorithms [7, 8] use local topology (incidence and adjacency) to rectify
defects and are successful in the majority of candidate models, but may create undesirable

global topological and geometric changes. See also [9] for a critique of these methods.

Barequet and Sharir [9] developed a global gap-closing algorithm for polyhedral models,
using a partial curve matching technique. In their method, gap boundaries are discretized.
Each match between any two parts of gap boundaries is given a score based on the close-
ness of their discrete points. They have shown that finding a consistent set of partial curve
matches with maximum score, a subproblem of their repairing process, is NP-hard. Bare-
quet and Kumar [10] developed a model repairing system using the algorithm in [9], but
with a modified score which is the normalized gap area between two matched parts of gap

boundaries. Visualization tools were also provided to enable the user to override unwanted
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modifications. The system was improved by Barequet et al [11] in terms of efficiency, and
extended to models with regular arrangement of entire NURBS surface patches. However,
this extension does not handle trimmed patches with intersection curve boundaries and

general B-rep models involving non-regular arrangement of surface patches.

A different type of global algorithm is based on spatial subdivision. Murali and Funkhouser
[12] developed an algorithm which handles defects such as intersecting and overlapping
polygons and mis-oriented polygons. The algorithm follows three steps: spatial subdivision,
solid region identification, and model output. It first subdivides R? into convex cells using
planes on which polygons sit. A cell adjacency graph is then constructed. Each node is a
convex cell, and each arc is a link between two cells sharing a polygon. Whether a cell is
a part of the intended solid is determined by its solidity value, ranging from -1 to 1. The
solidity value of a cell is computed based on how much area of the cell boundary is covered
by original polygons as well as solidity values of neighboring cells. Boundary polygons of
cells with positive solidity values are then output as the resulting solid boundary. A major
advantage of this algorithm is that it always outputs a valid solid. One limitation is that

it may mishandle missing polygons and add cells which do not belong to the model.

Hamann and Jean [13] proposed a user-assisted gap-closing method for curved boundaries
using bivariate scattered data approximation techniques to approximate missing data in

gap areas.

Another approach currently investigated by many researchers is the development of new
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geometric representations which are free of defects caused by the precision limitation of
the computer [3, 14]. Two typical examples are precise representation and error-bounded
representation (see [15, 16, 17]). The common characteristic of these two representations
is that both use new arithmetic systems for computer-representation of numbers and the

algebraic operations necessary for modeling are closed.

B-rep models contain topological and geometric specification of boundaries. Although
rarely, topological errors could happen. Often a model has a geometric specification in-
consistent with its topological specification. In such cases, it is unclear which one gives
correct information about the boundary. The task of model rectification, is to create a
valid boundary model which is also intended by the designer. Sakkalis et al [5] derived suf-
ficient conditions for representational validity of ideal models. Such conditions are useful
in developing defect identification and rectification methods. Krause et al [18] proposed a
methodology, which views representational validity as an application-dependent concept,
for processing (verifying and repairing) CAD data, especially those received from data ex-
change, and developed an experimental data processor for grid generation for aerodynamic
simulation. Jackson [19] developed the concept of tolerant modeling implemented in the
Parasolid modeller, where each face, edge and vertex of a B-rep model is associated with a
local tolerance and these tolerances are taken into account in subsequent operations. Com-
mercial software such as [20, 21| now repairs erroneous B-rep models interactively and/or
semi-automatically. Such repairing tools usually succeed in fixing local defects but leave

global consistency to the users or process in an iterative manner. This paper analyzes
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the nature of the manifold B-rep model rectification problem, as well as the complexity
of the problem. It approaches the problem as a reconstruction problem — reconstruct a
valid boundary model, which is also most likely to be the intended one, using only the

information in the erroneous model.

The paper is organized as follows: Section 2 discusses the nature of the rectification prob-
lem, and argues that the problem should be approached as a reconstruction problem in
order to reach the global optimal solution. Section 3 first studies and formulates a lower-
dimensional problem, the face reconstruction problem, and proves that it is NP-hard. Then
it extends this result to the boundary reconstruction problem. Section 4 concludes the pa-
per. The paper also includes an appendix which provides a brief review of NP-completeness,

needed in explaining this work.

2 Problem Statement

Defects must be identified before being rectified. Based on this principle, two approaches,

local and global, may be explored for the development of rectification methods.

A local rectification method traverses through a representation of a model, identifies defects
using the sufficient conditions derived in Sakkalis et al [5], and rectifies defects using the
same sufficient conditions, or some heuristic rules and/or user assistance if ambiguities
arise. Such an approach is the same as other rectification methods [7, 8, 20] except that

conditions for identifying and rectifying defects may have some differences. However, a
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local method does not guarantee a global optimal solution. In addition, rectification of
local defects may have unpredictable cascading effects on other topological and geometric
entities in the model, and some defects may not be rectified without searching further. A
global rectification method, on the other hand, identifies all defects once and for all. It then
rectifies defects such that the resulting model is not only valid but also optimal based on
some user-defined criteria. The main obstacle for developing such a method lies in the fact
that a priori identification of all defects, done independently of rectification, is impossible
in general. As the definition of a boundary is bottom-up in a model representation, the
validity verification should proceed in the same manner. Higher dimensional entities cannot
be verified if lower dimensional entities have not been rectified. Part of the reason why it is
so difficult to implement an identify-and-rectify approach is the necessity to maintain the
consistency between topological and geometric information. It is not difficult to identify
a defect, but it is hard to decide what is right or wrong, whenever there is inconsistency

between topological and geometric information.

The ultimate goal of model rectification is to find the model intended by the designer
but misrepresented. However, without user assistance, any solution resulting from the
erroneous model is only an educated guess. It comes down to the question “What do we
trust about a model that contains defects?” This is the most fundamental question we
must answer before we can move any further. For example, if a B-rep model has correct
topological information, while there is no appropriate geometry embedded in the underlying

surfaces, what is the intended boundary? Should the topological information be modified
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to accommodate the geometry, or should the geometry (surfaces) be perturbed to have a

boundary consistent with the topological information?

To answer such questions, we need to classify the information in a boundary representation:
those initialized or selected by the designer and those induced by the system. In a solid
modeling system, the only entities the designer can directly manipulate are the underly-
ing surfaces. All others, topological information and individual topological and geometric
entities, are computed by the system. For this reason, we opt to believe that surfaces are
the basic information to be used in a rectification method. Another reason for such a hy-
pothesis is that surfaces are specifically designed to fulfill certain performance requirements
and functionalities, and therefore, should not be subjected to any modification without the
designer’s permission. In addition to the above, another piece of information which can be
used in the rectification process is the genus of the intended solid boundary. Genus captures

the designer’s intent and can be computed using the well-known Euler’s formula [22].

In this context, model rectification becomes a model reconstruction problem. An algorithm
for model rectification searches for the intended boundary in the union of all the surfaces,
and rebuilds all necessary topological and geometric entities. However, there may exist
many potential solid boundaries, or none at all, resulting from the surfaces. Without
additional information, it would be difficult to make a choice. Since an erroneous model
in a neutral format (e.g. STEP[23]) is computed with reasonable precision in its native
system, the information in the model could help clarify such ambiguities, although it should

be used with caution. Roughly speaking, a desirable solution is a model which describes a
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boundary somewhere “near” the object described by the original model, both topologically

and geometrically.

A typical data structure for B-rep models consists of a topological structure and a geometric
representation. For a simplified version, see Figure 1. The topological structure, shaded
in Figure 1, is a graph which describes adjacency and incidence relations' (represented
by arcs) between topological entities (represented by nodes). In typical implementations
more detailed topological relations are explicitly stored than those implied in Figure 1
(e.g. adjacency relations between a face and all its neighboring faces). The geometric
representation includes points, curve and surface equations, which are associated with
appropriate topological entities. A model, thus, is an instance of the data structure, and
is walid if it describes a solid boundary. In addition, a face is valid if it describes a set
homeomorphic to a closed disk minus & mutually disjoint open disks, and has no handles.

Also, see [5] for validity of other topological nodes.

Let m, be a model with topological structure G(m,)?. G(m,) is valid if it is possible to
assign each topological entity (face, edge, vertex) a set of the corresponding dimension

(surface, curve, point) whose interior is manifold, such that the union of these manifolds

! Two topological entities of different dimensionalities have an incidence relation if one is a proper subset
of the other. Two topological entities of same dimensionality have an adjacency relation if their intersection

is a lower dimensional entity that has an incidence relation with each of them.

2We denote models and face nodes by lowercase letters, and the point-sets they represent by uppercase
letters. For example, model m, represents solid M,. The topological structure of a node is denoted by

G(node).
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Model
Shell
Surface Face
Loop
Curve Edge
Point Vertex
Figure 1: Data structure for B-rep models
bounds a solid. That is, if G(m,) is valid, there exists a nonempty set
M ={m | mis a valid model and
has topological structure G(m,)}. (1)

For simplicity, in the following analysis, we assume that models have only one shell. Tt will
be clear at the end of this paper that the same result applies to models with multiple shells.
With this assumption, for any my, ms € M, M; is homeomorphic to M,. Therefore, in
case that the geometric representation of m, is inconsistent with G(m,), if a reconstructed
model m,, has topological structure G(m,), m,, is topologically equivalent to the model
incorporating the design intent. If G(m,) is different from G(m,), the topological equiva-
lence between m,, and m, can be imposed by requiring that the genus of dM,, is equal to
that of M, where model m € M. We simply denote this by g(m,) = g(m,), because both

genuses can be computed by applying Euler’s formula to G(m,) and G(m,), respectively.

10
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Geometrically, two objects are close to each other if each one is in a neighborhood of the
other. Some form of distance function could be used as a measure for this purpose, either
the maximum distance or a well-defined average distance. An alternative, arguably more
suitable for boundary rectification, is the boundary area change before and after rectifi-
cation, because both the rectified and the original models use the same set of underlying
surfaces. A correspondence can be established between a rectified face and an old face if
they both have the same underlying surface, and the area difference between them mea-
sures the geometric change. No matter what measure is used, it should approach zero as

the erroneous model becomes the exact model.

Since M, and M, are not defined for a non valid model, we first define another set, called
OM] as follows. We project the loops of edges e; of m, onto each of the corresponding
surfaces to obtain new loops of edges e; which bound new faces F, and let OM] = U, F].
Note that 0M, may not bound a solid. The details of this construction are in Sections
3.1.1, 3.1.2 and 3.2. In these sections we define a function ¢ which evaluates the geometric
difference between 0M! and 9M,,. We will denote this by ¢(0M_, OM,,). Let ¢ be a user-
specified tolerance for the geometric change and let m,, G(m,) be as above. An ideal

boundary reconstruction algorithm should follow the following procedure (see Figure 2):

1. Find a new model m,,, such that m, has topological structure G(m,), i.e. G(M,) ~

G(m,)® and ¢(OM.,0M,) < e.

3Two graphs are homeomorphic if both can be obtained from the same graph by a sequence of subdi-

visions of arcs.

11
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2. If there exists a number of such new models, select the one with the minimal ¢ value.

3. Otherwise, find a new model m,, such that G(m,) is different from G(m,) but

g(my) = g(m,), and ¢(OM!,0M,) < e.

4. If there exists a number of such new models, select the one with the minimal topo-
logical structure change, e.g. the difference of the total numbers of arcs and nodes in

G(my,) and G(m,) is minimal.

5. Otherwise, find a new model m,, with ¢(0M_,0M,) < e. If there exist more than
one such new boundaries, select the one with the minimal topological change (i.e.

minimal genus change); otherwise, no new model is reconstructed.

In the next section, we study the following subproblem which is essential to this recon-
struction process:

Boundary reconstruction (BR) problem: Given a B-rep model m,, whose geometric
representation is inconsistent with its topological structure, reconstruct a new model m,,
using only the information in m,, such that: (1) g(m,) = g(m,) and (2) ¢(OM.,0M,,) is

minimal.

12
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m with topological s tructure G(m o)

l

constructm  ns.t.
G(mM)~G(mo) and

oMo, M n)<e
Y return the one with
minimal geometric
change
N

constructm  ns.t.
g(mn)=g(m o)
and @Bl o, ¥ n)<e

Y return the one with
minimal topological
structure change

N

constructm n

with (Bl b, B n)<e

Y return the one with
minimal genus chang e

N

( return )

Figure 2: Flow chart of an ideal global reconstruction algorithm

13
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3 Problem Complexity

3.1 Face reconstruction problem

Before moving onto the boundary reconstruction (BR) problem, we first study a lower-
dimensional problem which not only gives us insight on the nature of such reconstruction

problems, but also plays a crucial role in understanding the complexity of the BR problem.

A face node in a B-rep model represented in a certain format such as STEP [23] is likely
to have inconsistent geometric features such as edges whose underlying curves are not on
the underlying surface of the face. Topological errors such as open loops make a clear
definition of the face geometry even more elusive. Similar to boundary reconstruction, face
reconstruction builds a new face node f,, from an erroneous face node f,, using only the
information in the given model, such that f, is not only valid but also close to the object
described by f, in both topology and geometry. We formulate the face reconstruction

problem as an analog to the BR problem.

A valid face is homeomorphic to a closed disk minus k& mutually disjoint open disks, and
has no handles [5]. If £, is valid, G(f,) is a planar graph that consists of simple cycles. Any
two of these cycles may share at most one common nodes. Two graphs are homeomorphic
if both can be obtained from the same graph by a sequence of subdivisions of arcs [24].
However, two homeomorphic graphs may have different geometric embeddings, and thus

define two faces which are not homeomorphic. See Figure 3. In order to capture the design

14
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intent topologically, the component containing the outer loop in G(f,) also needs to be
homeomorphic to that in G(f,), in addition to that G(f,) is homeomorphic to G(f,), so
that the above situation is prevented. In this case we say that G(f,) is homeomorphic to
G(f,) in the strong sense. In the following problem statement, ¢; is a function evaluating
the geometric change before and after rectification, and will be elaborated in Section 3.1.2.
Face reconstruction (FR) problem: Given a face node f,, whose geometric representa-
tion is inconsistent with its topological structure, in a B-rep model m,, reconstruct a valid
face node f,, using only the information in m,, such that G(f,) is homeomorphic to G(f,)

in the strong sense and ¢¢(F,, F,) is minimal.

Figure 3: Two homeomorphic graphs with different geometric embeddings

In the following, we first study how an invalid face node could be rectified, and then

formulate the face reconstruction problem mathematically and prove its NP-hardness.

3.1.1 Face boundary reconstruction

Let R be the underlying surface of face node f,, and {R;}i<i<n be surfaces in m, such
that C; = RN R; # (. Surface intersections could be very complex. Here, for simplicity,

we assume that surfaces do not overlap. In addition, we also exclude isolated intersection
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points, since such a point does not bound a finite region on R, and therefore, is not used
to form the face boundary. However, if an intersection point between two surfaces is on an
intersection curve, it may be used as a vertex in the face boundary. See Figure 4(a), where

the intersection point of R and R, is on C}.

(a) (b)

Figure 4: Curve segments from surface intersections

Furthermore, C;’s may intersect each other. Each C; is subdivided by intersection points
into curve segments, each of which is either an open curve bounded by two intersection
points or a simple closed curve. Those intersection points, indeed, are intersections of three
or more surfaces. Denote the collection of curve segments on all C;’s by {S;;}. See Figure
4(b), where broken lines are curve segments and solid dots are intersection points. In the
figure, because the underlying surface is finite, its boundary curves are also used in creating
curve segments. Notice that {S;;} subdivide R into patches whose interiors are disjoint

and intersection-free. The face geometry must be either one of these patches or the union

16
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of some patches. Therefore, the face boundary consists of curve segments from {S;;}.

In the following description, for simplicity, we use a lowercase symbol to denote an edge
or a vertex as a point-set. Whenever the corresponding representational node is referred,
the word node is used before the notation. For example, node e represents edge e. For
models and faces, the same notation scheme as in the previous section is used, i.e. lowercase

symbols for nodes and uppercase symbols for point-sets.

Let node e;, be an edge node in f,, also shared by face node f; having R; as its underlying
surface. Then, to maintain geometric consistency of the adjacency relation between these
two faces, e;, must be a subset of C;. This is rarely true as the underlying curve given in
node e;, is often an approximation of the exact intersection curve C;. As a matter of fact,
as illustrated in Figure 5, e;, may be pathologically defined by a space curve (the broken
line) and two points (the two circles) which may not be on the curve as they are supposed
to be. Because the adjacency relation is symbolic and thus exact, the initial rectification
of node e;, can be done by using C; as the underlying curve and discarding the one given
in the original model. Consequently, the vertices must be on C;. They also need to be
close to their original erroneous positions in order to reflect the design intent. Reasonable
replacements of the original vertices v;, v;2, for instance, could be the projections v}, v},
of v;1,v;5 onto C;. See Figure 5, where the new vertices are solid dots. Therefore, such
a rectified edge, denoted by e; , is a subset of C;, bounded by vj;, v;, and oriented in the
same way as e;, provided that the given underlying curve in node e; and C; are not far

apart.

17
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given underlying
curve of node €i
/

Figure 5: Initial rectification of an edge on a face

However, as a face should be bounded by curve segments from {S;;}, a rectified edge
should consist of such curve segments. Edge e; is not guaranteed to be so. See Figure
6(a). Further rectification of e;, selects some curve segments on C; such that their union
is a simple open or closed curve and an optimal approximation of egk. The union defines
a new edge e; , whose corresponding node has the same symbolic information as node e;;,
i.e. the same embedding surfaces, the same parent faces, and the same orientation, but has
a consistent geometric representation while node e;, does not. Edge e; can be obtained
by perturbing vertices vj;, v;, of egk to the closest intersection points on C;. This vertex
perturbation is also necessary in order to achieve geometric consistency at a vertex. A
vertex is involved in various incidence and adjacency relations between its incident faces
and edges, and therefore, needs to be positioned at the intersection point of those underlying

surfaces.

The collection of such rectified edges, however, may not form a valid face boundary, as there

18
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(@) (b)

Figure 6: Creation of e; by vertex perturbation

may exist open loops and/or dangling curve segments. For example, in Figure 7(a), (where
the rectified edges are thick lines,) a dangling curve segment Si5 and a gap between ef and
eq exist. The final act of face reconstruction, is to trim away dangling curve segments and
fill gaps with curve segments from {S;;}, so that the selected curve segments form a valid
face boundary. See Figure 7(b). This trimming and gap-filling process should create a face
boundary which satisfies the topological and geometric requirements stated in the problem

statement.

Assume that in the final reconstructed face boundary, the selected curve segments from C;
are

Si = {Sij h1<i<r;- A new edge e} is created by stringing curve segments in S;. The
process starts with an arbitrary curve segment S;;, € &;, and searches for its adjacent
curve segments in S;. If, at one endpoint, exactly one adjacent curve segment S;;, is found,

then, S;;, is selected and the search marches on at the other endpoint of S;j,; otherwise,
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dangl i ng segnent

GG G

gap

(b)

Figure 7: Trimming of dangling curve segments (a) and gap filling (b)
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the process terminates and resumes at the other endpoint of S;;,. Notice that there may
be more than one new edges created from S;. For example, in Figure 7, curve segments

S72, 574 on C7 are selected in the final face boundary, creating two new edges e7 and ef;.

In summary, an edge e;, in the original model, shared by faces f, and f;, is first rectified
by projecting its vertices onto C; = R N R;, which is the exact underlying curve of node
ei,- This produces egk, and achieves a consistent adjacency relation between f, and f; but
may not do so at the vertices. Edge e; is then rectified by perturbing its vertices to their
closest intersection points on Cj, such that the resulting edge e; consists of curve segments
in {S;;}. Notice that node ej, has the same symbolic information as node e;, and could be
geometrically consistent with all adjacency and incidence relations in which it is involved,
if other topological entities are appropriately constructed. Typically, the geometric change
between e;, and e; is minimal. Since such edges may not form a valid face boundary,
additional curve segments from {S;;} are added to fill gaps and dangling curve segments

are trimmed away. In the rectified face boundary, a new edge €] consists of curve segments

from Cj.

3.1.2 Problem formulation and proof of NP-hardness

To mathematically formulate the FR problem, especially to quantify face geometric change,

we classify new edges into two categories:

1. A new edge e belongs to the first category if it has a corresponding edge e;, in the

21
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original model, i.e. e is considered to be the rectified e;. Such a new edge node
has the same symbolic information as node e;, and a geometry which is an optimal
approximation of that of node e;,. Because e;, is not well defined, the geometric
change between ej; and e;, is measured by comparing e} and e; , which is not only
well defined but also symbolically the same as and geometrically close to e; . We

define ¢, : (C; x C;) — R, where

Pe(efy-€i) = length((ef, Ue,) — (ef, Ne;,)),

el el C C. (2)

ik’ ik —

For example, in Figure 6, if €] = e; , meaning that during the trimming-and-filling

stage the edge is unchanged, then

el €,) = [iavar| + [vigVial; (3)

where | | denotes the length of a curve segment. If there exist more than one new
edges on C; which could belong to the first category, the one with the minimal ¢,
value is designated as the new edge in the first category, i.e. there is at most one
corresponding new edge in the new boundary for each edge in the original model. In
addition, e Ne; # (0, so that a new edge whose geometry is far away from e;, will
not be taken as the corresponding new edge of e;,. This could happen, for example,

when two new edges ef, |, e; , have the same symbolic information as e;, but
) )

!
6&,1 M e, #0,

22
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Qse(ezg,l’ 6;]‘,) > ¢e(622,2’ e;k)
In Figure 7(b), all the new edges, except e, belong to the first category.

2. All other new edges belong to the second category. These edges are generally added
to close gaps. Let a new edge be on curve C; = RN R;. It is possible that the face
on R; is not adjacent to f, in the original model, and therefore, the new edge on C;

does not have a corresponding old edge.

Because the edges in the original face node carry the design intent, geometric changes to
them should be minimized, i.e. } ¢, for the new edges of the first category should be
minimal. If there exist more than one choices of new face boundary having the minimum,
the one with the shortest total length of the edges of the second category should be chosen,
because any drastic change is not trustworthy. Figure 8(a) shows the curve segments and
initially rectified edges. Notice that the original face node has an inconsistent geometric
representation. It can be seen in Figure 8(b) that if all four edges represented by thick
lines are selected in the final boundary, 3 ¢, is the minimum. There exist five such loops.
Figure 8(c) shows the final face boundary which has the shortest gap-closing edge e?, and

Figure 8(d) shows the other four.

We now formulate the face reconstruction problem as a search problem:
Face reconstruction (FR) problem: Let f, be a face node, whose geometric repre-

sentation is inconsistent with its topological structure, in a B-rep model, and {S;;} be as

23
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@)

(b)

(©

(d)

Figure 8: Minimization of edge geometric change

24
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above. Search for a subcollection

{Sij heisva<i<r (4)

of {S;;}, where L; is the number of curve segments selected on Cj, such that

1. {Si;} bounds a face F,.
2. G(fn) is homeomorphic to G(f,) in the strong sense.
3. X de(e;,, €} ) is minimal for the new edges of the first category.

4. If condition (3) is satisfied, then, the total length of the edges of the second category

is also minimal.

Intuitively, this problem can be converted to a graph problem as {S;;} forms a geometric
embedding on R of a graph. This graph, Gy = (V}, Ey), has curve segments in {S;;} as
arcs in E; and intersection points as nodes in V;. The solution to the FR problem is then
a subgraph satisfying the properties in the problem statement. The face reconstruction
process is a process of searching for such a subgraph. A straightforward implementation
of this process is to search all possible subgraphs and find the one satisfying conditions 1
to 4 above. Such an exhaustive search, however, may need exponential time in terms of
the number of arcs in Ey. In the following, we prove that the FR problem is NP-hard by
proving a restricted problem is NP-hard. See also the appendix for some further comments

on NP-hard problems. But first, we introduce a known NP-hard problem [25]:

25
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Rural Postman Problem:* Let graph G = (V, E). Each e € F has length I(e) € Z .
Let E' C E. Find the circuit in G that includes each arc in E’ and that has the shortest

total length.

Theorem 3.1 FR problem is NP-hard.

Proof: The basic idea of the proof is to consider the following instance of the restricted
FR problem: The topological structure of f, represents a closed disk, and there is only
one curve segment on each C; (see Figure 9). The boundary of F, is then a simple closed
curve. The solution to the problem must be a circuit in graph Gy if condition (2) is to be

satisfied.
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Figure 9: An instance of the restricted FR problem

For each edge e;, of F;,, we construct egk, eg’k as above. Because there is only one curve

segment S;; on each Cj, e = S; provided that e; is not far different from Si. If Sj

“Here we give the Rural Postman search problem because the FR problem is also a search problem. In

[25], the Rural Postman decision problem is given.
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is in the reconstructed face boundary, then e = ej = Si, and therefore, ¢c(ef,e; ) is

minimal, due to the way e; is constructed. If it is not in the face boundary, then é.(ef. , €; )

i) ik

is maximal, because e; = 0. Let
S; = {Si1| there exists e; = S;1,0 <7< N.} (5)

Then, if all the curve segments in S; are selected, " ¢, for the edges of the first category
reaches its minimum. This means that a valid face boundary which includes all the curve

segments in &;, will be selected over any choice which does not.

The corresponding instance of the Rural Postman problem is as follows: Graph G; with
l(e) = length(S;) for each 7, and E' = S;. We prove that it can be reduced to the restricted

FR problem at least in the abstract setting of graph theory °.

It can be observed that the solution to the restricted FR problem answers the Rural Post-
man problem; if the solution exists for the restricted FR problem and contains all the curve
segments in Sy, it is the circuit with the shortest length and including all the arcs in E’,
and therefore, the solution to the Rural Postman problem; if the solution does not exist or
it exists but does not contain all the edges in &7, no solution exists for the Rural Postman

problem. [ ]

STheoretically, it is possible to develop a linear algorithm to draw a planar graph on the plane. See
[26, 27]. This establishes the argument that an abstract graph search problem could be converted to an

instance of the geometric problem (FR problem).
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3.2 Boundary reconstruction problem

Now we formulate the BR problem and prove that it is also NP-hard.

Let m, be the given B-rep model. The underlying surfaces, {R;}1<i<n, are subdivided by

surface intersections into a collection of patches

{Pijhi<i<nva<i<m, (6)

where N; is the number of patches on surface R;. For a face node f;, F; may not be
well defined. Because the embedding information is symbolic and thus exact, the initial
rectification of F; can be done by trimming the underlying surface R; of f; using projections
of the loops in f; onto R;. Denote such a face by F}. As in face reconstruction, F} is further
rectified by selecting patches from {P;;}1<j<n, to form a new geometry which is an optimal
approximation of F;. Denote this new face by F/’. The difference between F; and F' can

be measured by function ¢; : (R; x R;) — R, where

¢f(Fi’,F¢") = area((Fz.’ U Fz‘”) _ (Fz' N Fi”)),

Fl,F! C R, (7)

Such rectified faces may not form a valid solid boundary due to the possible existence of
dangling patches and holes. Therefore, a trimming-and-filling process follows. Similar to
face reconstruction, in the new solid boundary, a new face F;* belongs to the first category
if it has a corresponding old face, and to the second category if it does not. For the faces

of the first category, 3 ¢(F;*, F]) should be minimized. If there exist more than one valid
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boundaries having the minimum }’ ¢, that with the minimal total area of the faces of the

second category should be chosen.

The boundary reconstruction problem can also be formulated as a search problem:
Boundary Reconstruction (BR) problem: Let m, be a B-rep model whose geometric
representation is inconsistent with its topological structure, and {P;;} be as above. Search

for a subcollection
{Piji hi<i<ni<k<k;, (8)
of {P;;}, where K; is the number of patches selected on surface R;, such that
1. {P,;,} bounds a solid M,.
2. g(my) = g(m,), where m,, is the new model representing M,,.
3. X ¢s(F, F) is minimal for the faces of the first category.

4. If condition (3) is satisfied, then, the total area of the faces of the second category is

also minimal.

We now prove that the BR problem is NP-hard:

Theorem 3.2 BR problem is NP-hard.

Proof: We prove the theorem by converting the restricted FR problem to the BR problem.

Assume that in an instance of the restricted FR problem, the face node f, has a plane as

its underlying surface. Sweep the face along the normal direction to a parallel plane. The
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sweeping solid of F, should be homeomorphic to a closed ball. The instance of the BR

problem is a patch collection

{P;;} = {patches generated from curve segments} U

{patches from the two planes}, (9)

and a model m, with its topological structure representing a sphere and {F]} generated
from {egk}. See Figure 10 for an example. This conversion can be executed in polynomial
time. If a subcollection of {S;;} is the solution to the restricted FR problem, then the
patches generated from the curve segments in the subcollection, with additional patches
from the two planes, is the solution to the BR problem. Conversely, if a subcollection of
the patches is the solution to the BR problem, it must be bounded by two patches from
the two planes and patches whose generating curve segments indeed form the solution to

the restricted FR problem. [ ]

For models with multiple shells, the same result holds, because the boundary reconstruction

problem of models with one shell is a special case of that of models with multiple shells.

4 Conclusions

The BR problem is, in certain ways, similar to the gap boundary matching problem studied
by Barequet and Sharir [9] which is also shown to be a NP-hard (global search) problem.

However, they are quite different in nature as the former reconstructs a boundary from
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Figure 10: Illustration of the proof of Theorem 3.2

a set of surfaces and involves complex topological constraints, whereas the latter matches
boundaries of a set of surface patches. Theoretically, of course, all NP-complete problems

are equivalent, but their specifics can vary significantly.

The understanding of the NP-hardness of a problem helps design algorithms to efficiently
and properly solve the problem. In a recent paper [29], we propose model rectification
algorithms which approximate the process of finding the optimal solutions described here.
To achieve numerical robustness in floating point environment, interval model representa-
tion proves to be a powerful tool [16, 17]. We further study some key topological issues of
interval solid models in [28], and develop interval geometric and numerical methods useful

in model rectification in [30]. All these are summarized in a review paper [31].
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Appendix: Short review of NP-completeness

This appendix provides a brief introduction to the theory of NP-completeness. For details,
see [25]. A decision problem is a problem whose answer is yes or no. A problem is said to
belong to the class P if it can be solved by a polynomial time DTM program. DTM is the
abbreviation for deterministic one-tape Turing machine, a simplified computing model. If
the problem can be solved by a polynomial time NDTM program, it belongs to the class
NP. NDTM, non-deterministic one-tape Turing machine, has the exact same structure as
DTM, except that it has a guessing module. A NDTM program has two distinct stages:
guessing and checking. For example, the traveling salesman problem is given as:

Traveling salesman problem: Given a finite set of cities, a distance between each pair
of cities, and a bound B, is there a tour of all the cities such that the total distance of the

tour is no larger than B?

A NDTM program first guesses a tour of all the cities, and then verifies in polynomial time
if the length of this guessed tour is less than the given threshold. If at least one guessed tour
is accepted, the answer to the problem is yes. Therefore, the traveling salesman problem

is in class NP.

It is observed that class(P)Cclass(NP). It is also an unproven conjecture that P#NP. For
a problem in NP, there exists a polynomial p such that the problem can be solved by a
deterministic algorithm having time complexity 0(2”(")), where n is the length of the input

string. A decision problem II is NP-complete if [T NP and, for all other decision problems
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IT" eNP, there is a polynomial transformation from II' to II. A polynomial transformation

is a mapping f such that

1. There exists a polynomial DTM program which computes f.

2. For any instance z of the problem, z is accepted if and only if f(x) is accepted.

Therefore, NP-complete problems are the “hardest” problems in NP. The NP-completeness

proof of a decision problem consists of the following four steps:

1. Show that IT NP, i.e. IT can be solved by a NDTM program.

2. Select a known NP-complete problem II'.

3. Construct a transformation f from II' to II.

4. Prove that f is a polynomial transformation.

The NP-completeness can also be proven by restriction, that is, a problem is NP-complete

if it contains a known NP-complete problem as a special case.

The concept of NP-hardness applies to problems outside class NP, e.g. search problems.
Informally, a search problem is NP-hard if it is at least as hard as some NP-complete
problem. For example, the search of the shortest tour of all the cites is as hard as the
traveling salesman decision problem, because the solution to the search problem certainly

answers the decision problem.
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