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Abstract

This thesis addresses problems of free-form object matching for the point vs. NURBS
surface and the NURBS surface vs. NURBS surface cases, and its application to copy-
right protection. Two new methods are developed to solve a global and partial match-
ing problem with no a priori information on correspondence or initial transformation
and no scaling effects, namely the KH and the umbilic method. The KH method es-
tablishes a correspondence between two objects by utilizing the Gaussian and mean
curvatures. The umbilic method uses the qualitative properties of umbilical points
to find correspondence information between two objects. These two methods are ex-
tended to deal with uniform scaling effects. The umbilic method is enhanced with an
algorithm for scaling factor estimation using the quantitative properties of umbilical
points. The KH method is used as a building block of an optimization scheme based
on the golden section search which recovers iteratively an optimum scaling factor.
Since the golden section search only requires an initial interval for the scaling factor,
the solution process is simplified compared to iterative optimization algorithms, which
require good initial estimates of the scaling factor and the rigid body transformation.
The matching algorithms are applied to problems of copyright protection. A suspect
model is aligned to an original model through matching methods so that similarity
between two geometric models can be assessed to determine if the suspect model
contains part(s) of the original model. Three types of tests, the weak, intermediate
and strong tests, are proposed for similarity assessment between two objects. The
weak and intermediate tests are performed at node points obtained through shape
intrinsic wireframing. The strong test relies on isolated umbilical points which can
be used as fingerprints of an object for supporting an ownership claim to the original
model. The three tests are organized in two decision algorithms so that they produce
systematic and statistical measures for a similarity decision between two objects in
a hierarchical manner. Based on the systematic statistical evaluation of similarity, a
decision can be reached whether the suspect model is a copy of the original model.

Thesis Co-Supervisor: Nicholas M. Patrikalakis, Kawasaki Professor of Engineering

Thesis Co-Supervisor: Takashi Maekawa, Principal Research Scientist
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Chapter 1

Introduction

1.1 Background and Motivation

Rapid advance of computer technology has revolutionized design and manufacture
of products in various fields. Almost all product data are created and stored in
digital form using computer systems, and directly provided as input to computer
aided manufacturing systems to produce physical products. As these data models
are expensive and a significant part of the production process, there is a growing
need to protect the ownership of these data models against unauthorized use by
malicious parties [61]. Moreover, the ubiquitous nature of the Internet along with
the World Wide Web and related technologies make it possible to rapidly exchange
information electronically all over the world with no extra cost, which enables design
and production to be performed at remote design and production sites. Easy data
exchange, on the other hand, poses serious concerns to the owner of valuable data
since such important data may be duplicated by unauthorized parties without losing
any details when they are exposed to the Internet. Therefore, copyright protection for
digital product models has become a major issue, and protecting intellectual property
of digital information has emerged as an important research topic.

In the design and manufacturing fields, product models are typically represented
in Non-Uniform Rational B-Spline (NURBS) form which is a standard format in
industry [93, 89]. In the past, 3D model descriptions had been represented with a
fairly restrictive shape variety, for example, 2D drawings (blueprints). Today they
are typically described with CAD systems using digital data. Here the richest shape
variety can be modeled by free-form surfaces that are typically defined as NURBS.
Hence, the most important and fundamental part of the value creation process for a
3D model consists in creating the digital 3D free-form model.

Two types of feasible protection methods for 3D free-form objects can be consid-
ered: one is to embed watermark information in the object and check the watermark
for illegal duplication. The other method is to align two objects as accurately as pos-
sible and check them for similarity. Several methods have been reported on digital
watermarking for 3D models. Most of the methods are designed for models repre-
sented via a triangular mesh or via range data. These techniques, however, are not
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appropriate for 3D CAD data models usually represented in NURBS form. There
has been an attempt to embed user-defined information to the NURBS representa-
tion by Ohbuchi et al. [86]. But the embedded data can be easily destroyed by
reparametrization or reapproximation. Since embedding robust user-defined water-
marks in the NURBS representation is difficult, the similarity checking method can
be adopted for protection of the ownership for digital objects represented in NURBS
form.

Matching is a key step in the similarity checking method. The purpose of matching
is to minimize the geometric discrepancy caused by translation, rotation and scaling.
Three dimensional object matching has been one of the most important topics in com-
puter vision, computer graphics and inspection, and there have been many significant
contributions in developing matching methods for various representation forms such
as NURBS surface patches, polyhedral surfaces and range data. Campbell and Flynn
[20] regarded free-form as “a general characterization of an object whose surfaces are
not of a more easily recognized class such as planar and/or natural quadric surfaces.”
Another interpretation was given by Besl [9]: “a free-form surface has a well defined
surface normal that is continuous almost everywhere except at vertices, edges, and
cusps.” Many surfaces such as ship hulls, automobile bodies, aircraft fairing surfaces
and organs are typical examples of free-form surfaces, which can be represented in
various forms, such as NURBS surface patches, polyhedral surfaces and range data.
Matching is used in various applications. The manufacturing process mostly uses
matching techniques for automatic inspection, and in computer vision, matching is
used for scene integration and object recognition. When matching is used in the con-
text of computer aided inspection, it is referred to as localization [90], whereas when
it is used in the context of computer vision it is referred to as registration [10].

Many methods have been proposed for free-form object matching. In computer
aided design, matching through minimization of a squared distance metric objective
function is widely used since it is conceptually easy and shows good performance. But,
such an approach cannot be used for a case that no a priori information for corre-
spondence or initial transformation is provided, which commonly happens in practice.
Correspondence information can be provided by the user and then an iterative search
method can be employed to find the best transformation. In this case, however, the
matching process is not automated. Partial matching and uniform scaling effects need
to be considered in the context of the matching problem as well. Here, only uniform
scaling is discussed since non-uniform scaling generally destroys the functionality of
an object. A global method such as the moment method cannot handle partial ob-
ject matching and most of matching methods fail to recover the scaling factor. A
problem containing partial matching and scaling effects with no a priori information
on correspondence is the most general form of the matching problem, which has not
been studied so far.
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1.2 Research Objectives

A primary objective of this thesis is to develop a global and partial matching method
with scaling effects to handle the point vs. NURBS surface and the NURBS surface
vs. NURBS surface cases when no a priori information on correspondence or initial
transformation is provided. Two approaches are considered in this thesis: one involves
use of isolated generic umbilical points and the other use of the Gaussian and mean
curvatures and a 1D optimization scheme. Using either one of them, two objects are
aligned as closely as possible so that the differences between two objects caused by
the rigid body transformation including scaling are minimized.

Efficient construction of shape intrinsic wireframe is another topic of this thesis. A
shape intrinsic wireframe is a representation method of a surface using shape intrinsic
properties, such as lines of curvature and geodesic curves which are independent of
parametrization as well as the rigid body transformation. Robust calculation of the
intrinsic properties is an important issue that needs to be considered in this thesis.
Extraction of umbilical points deserves more attention because complete information
on them is critical in construction of shape intrinsic wireframe, matching using um-
bilical points and decision algorithms. An efficient and robust algorithm is developed
to extract umbilical points from NURBS surfaces, which can effectively find not only
isolated umbilics but also non-isolated umbilics forming curves or regions such as
planar or spherical.

The assessment of matching is a topic that is also discussed in the thesis. Three
hierarchical tests, the ε-offset, principal curvature and direction test, and the umbil-
ical point test, are proposed, and a quantitative evaluation method of similarity is
developed along with two similarity decision algorithms. The algorithms consist of
the three hierarchical tests, and produce systematic and statistical measures that can
be used for a similarity decision.

Application of the proposed algorithms to copyright protection is demonstrated
with examples. The decision algorithms are primarily used to determine if a suspect
model is a copy of an original model. After matching the two models, a systematic
and statistical assessment of the similarity between two models is performed, from
which a decision can be made if one object is a copy of the other in a hierarchical
manner.

1.3 Thesis Organization

The thesis is structured as follows:
In Chapter 2, differential geometry of surfaces, and the NURBS representation for

curves and surfaces and their properties are reviewed. This is followed by mathemat-
ical treatment of lines of curvature, geodesics and umbilical points. The classification
of umbilical points is presented in detail.

In Chapter 3, computation methods and algorithms for lines of curvature, geodesic
curves, orthogonal projection and extraction of umbilical points are presented. Using
all proposed calculation methods, a quasi-automatic system to create surface intrinsic

14



wireframes is introduced.
Chapter 4 is devoted to matching algorithms. Two methods to establish a cor-

respondence between two objects are proposed, and expanded to deal with partial
matching problems with scaling when no a priori information on correspondence is
given. One method involves use of umbilical points and the other use of an optimiza-
tion scheme. Accuracy, complexity and actual performance analyses of the proposed
algorithms are presented.

Two similarity decision algorithms are presented in Chapter 5, which are used for
copyright protection. Both algorithms are based on the hierarchical tests proposed
in Chapter 4. One algorithm uses the maximum values for a decision and the other
provides statistical data for a decision.

Chapter 6 presents examples of the proposed matching algorithms and applications
to protection of intellectual property.

Chapter 7 concludes the thesis with recommendations for future work.
Finally, detailed mathematical treatment of the classification of umbilical points is

presented in Appendix A followed by brief presentation of the formulation of Gaussian
and mean curvature functions for Bézier surface patches in Appendix B.
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Chapter 2

Theoretical Background

In this chapter, mathematical definitions and concepts which will be used through-
out this thesis are presented. Relevant aspects of differential geometry of surfaces
are summarized [113, 32], and properties and classification of umbilical points are
discussed in detail [95, 96, 17, 8, 79, 74, 91]. This chapter concludes with a brief
discussion of definitions and properties of NURBS curves and surfaces [93, 50, 91].

2.1 Review of Differential Geometry

2.1.1 Basic Theory of Surfaces

A parametric surface can be defined as a subset of 3D space, R3, obtained by mapping
a 2D parametric uv domain to R3

r(u, v) = [x(u, v), y(u, v), z(u, v)]T , (2.1)

where usually (u, v) ∈ [0, 1]× [0, 1]. A surface is regular if ∂r

∂u
× ∂r

∂v
6= 0. The regularity

condition implies that a unique unit normal vector N is defined at every point on
the surface and N = ru×rv

|ru×rv | . A curve on a surface r can be represented in the

form r(u(t), v(t)) where t is a parameter, usually in a range 0 ≤ t ≤ 1. The first
fundamental form, I, which is a distance measure on a surface, is defined as follows:

I = dr · dr = Edu2 + 2Fdudv + Gdv2, (2.2)

where dr is infinitesimal displacement of a curve on a surface r(u(t), v(t)), and E =
∂r

∂u
· ∂r

∂u
, F = ∂r

∂u
· ∂r

∂v
and G = ∂r

∂v
· ∂r

∂v
are the first fundamental form coefficients.

The second fundamental form, II, a measure of the curvature of a surface, is
defined as follows:

II = −dr · dN = Ldu2 + 2Mdudv + Ndv2, (2.3)

where N is the unit normal vector of a surface, and L = N · ∂2
r

∂u2 , M = N · ∂2
r

∂u∂v
and

N = N · ∂2
r

∂v2 are the second fundamental form coefficients. The negative sign ensures
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that if the normal curvature κ is positive, the center of curvature lies opposite to the
direction of the surface normal. Here, N · ∂r

∂u
= N · ∂r

∂v
= 0 are used for the derivation.

The unit tangent vector t of a curve on a surface r(u(t), v(t)) at p(∈ r) is obtained
by differentiating r with respect to the arc length s, i.e. t = dr

ds
. Then, the curvature

vector κ of the curve r(u(t), v(t)) at p can be calculated as the second derivative with
respect to s, i.e.

κ =
dt

ds
=

d2r

ds2
. (2.4)

The normal component of κ, or κ = −κ ·N is the normal curvature of a surface r in
the direction of t at p. Equation (2.4) can be rewritten as [113]

κ = −κ ·N = −dt

ds
· N =

dr

ds
· dN

ds
= −II

I
= −L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
, (2.5)

where λ = dv
du

. The extrema of κ are obtained from dκ
dλ

= 0. This yields

(E + 2Fλ + Gλ2)(Nλ + M) − (L + 2Mλ + Nλ2)(Gλ + F ) = 0, (2.6)

which can be rewritten as:

(E + Fλ)(M + Nλ) = (L + Mλ)(F + Gλ). (2.7)

Therefore, equation (2.5) becomes

κ = −L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
= −M + Nλ

F + Gλ
= −L + Mλ

E + Fλ
, (2.8)

from which we can set up two simultaneous equations to find the maximum and
minimum principal curvatures and their directions:

(L + κE)du + (M + κF )dv = 0,

(M + κF )du + (N + κG)dv = 0. (2.9)

Equations (2.9) have non-trivial solutions if and only if

∣
∣
∣
∣

L + κE M + κF
M + κF N + κG

∣
∣
∣
∣
= 0. (2.10)

Two distinct real roots of (2.10), κ1 and κ2 are the principal curvatures, and their
corresponding directions λ1 and λ2 the principal directions [113]. The principal di-
rections are orthogonal to each other. A double root κ is obtained at an umbilical
point. The Gaussian curvature, K = κ1κ2, and the mean curvature, H = κ1+κ2

2
, are
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obtained from the first and second fundamental form coefficients as follows [113]:

K =
LN − M2

EG − F 2
,

H =
1

2

(
2FM − EN − GL

EG − F 2

)

. (2.11)

2.1.2 Lines of Curvature

A line of curvature is a curve on a surface whose tangents are principal directions
at all points on the curve. At a point on a surface away from umbilical points, two
orthogonal principal directions are uniquely determined [113]. Hence, two lines of
curvature (maximum and minimum) intersect orthogonally at such a point. Lines of
curvature passing through an umbilical point are explained in Section 2.1.4.

Suppose that u = u(s) and v = v(s), where s is the arc length parameter. Then
we obtain [113]

du

ds
= η(M + κF ),

dv

ds
= −η(L + κE), (2.12)

if the first equation of (2.9) is used. Similarly, the second equation of (2.9) yields

du

ds
= µ(N + κG),

dv

ds
= −µ(M + κF ). (2.13)

Parametric values of lines of curvature are calculated by solving the first order differ-
ential equations (2.12) or (2.13).

2.1.3 Geodesics

Let us define a unit vector u = N × t at a point p on a surface, where t is the unit
tangent vector of a curve c on the surface at p. Then u is perpendicular to N and
t, and is contained in the tangent plane of the surface at p. The u component of the
curvature vector κ of c, which is obtained by

κg = (κ · u)u, (2.14)

is called the geodesic curvature vector, and the magnitude of κg is the geodesic cur-
vature in the direction of t at p(∈ r) [113]. Using (2.4) and the Christoffel symbols
Γi

jk, (i, j, k = 1, 2) [113],

Γ1
11 =

GEu − 2FFu + FEv

2(EG − F 2)
, Γ2

11 =
2EFu − EEv + FEu

2(EG − F 2)
,

Γ1
12 =

GEv − FGu

2(EG − F 2)
, Γ2

12 =
EGu − FEv

2(EG − F 2)
, (2.15)

Γ1
22 =

2GFv − GGu + FGv

2(EG − F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG − F 2)
,
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we can derive the geodesic curvature κg as follows:

κg =

[

Γ2
11

(
du

ds

)3

+ (2Γ2
12 − Γ1

11)

(
du

ds

)2
dv

ds
+ (Γ2

22 − 2Γ1
12)

du

ds

(
dv

ds

)2

−Γ1
22

(
dv

ds

)3

+
du

ds

d2v

ds2
− d2u

ds2

dv

ds

]

√
EG − F 2. (2.16)

The equation of a geodesic curve can be obtained by setting κg = 0 in equation (2.16)
according to the definition of the geodesics in [113]. Considering that the surface
normal N has the direction of a normal ±n to the geodesic curve, an alternative form
of (2.16) can be obtained from equations n ·ru = 0 and n ·rv = 0 using the Christoffel
symbols Γi

jk, (i, j, k = 1, 2) as follows [113]:

d2u

ds2
+ Γ1

11

(
du

ds

)2

+ 2Γ1
12

du

ds

dv

ds
+ Γ1

22

(
dv

ds

)2

= 0, (2.17)

d2v

ds2
+ Γ2

11

(
du

ds

)2

+ 2Γ2
12

du

ds

dv

ds
+ Γ2

22

(
dv

ds

)2

= 0. (2.18)

Equations (2.17) and (2.18) can be rewritten as a system of four first order differential
equations [113]:

du

ds
= p, (2.19)

dv

ds
= q, (2.20)

dp

ds
= −Γ1

11p
2 − 2Γ1

12pq − Γ1
22q

2, (2.21)

dq

ds
= −Γ2

11p
2 − 2Γ2

12pq − Γ2
22q

2. (2.22)

2.1.4 Umbilics

An umbilic is a point on a surface where the normal curvatures in all directions
are equal and the principal directions are indeterminate. The principal curvature
functions are represented in terms of the Gaussian (K) and the mean (H) curvature
functions as follows [113]:

κ1,2(u, v) = H(u, v)±
√

H2(u, v) − K(u, v). (2.23)

Let W (u, v) = H2−K. The principal curvatures, κ1,2 are real valued functions so that
W ≥ 0 must hold. From the definition of the umbilical point we have W (u, v) = 0.
With these two conditions combined, we can infer that at an umbilical point, W (u, v)
has a global minimum [72, 74]. Here, we assume that W is at least C2 smooth. Then,
the condition that W has a global minimum at an umbilic implies that ∇W = 0.
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Therefore, at an umbilic the following equations hold [74]:

W (u, v) = 0,
∂W (u, v)

∂u
= 0,

∂W (u, v)

∂v
= 0. (2.24)

Given a polynomial parametric surface patch such as a rational Bézier surface
patch, we can set W = PN

PD

, where PN and PD are polynomials in both u and v.
With the condition W ≥ 0, PN ≥ 0 is assured since PD > 0 is always true under
the regularity condition of the surface [113]. The equation W = 0 is equivalent to
PN = 0. The first derivative of W is ∂W

∂xi
= (∂PN

∂xi
PD − PN

∂PD

∂xi
)/P 2

D(i = 1, 2), where

x1 = u and x2 = v, which is reduced to ∂W
∂xi

= (∂PN

∂xi
)/PD using PN = 0. Therefore,

equations (2.24) are reduced to [74]

PN(u, v) = 0,
∂PN

∂u
= 0,

∂PN

∂v
= 0. (2.25)

Classification of Umbilical Points

Umbilical points are classified into two types: generic and non-generic. Generic
umbilical points maintain their properties under small perturbations of the surface,
while non-generic umbilical points may lose their qualitative properties under small
perturbations [8, 104, 74, 91]. They can be isolated or form lines or regions. Isolated
generic umbilical points are further classified into three types: star, monstar and
lemon as shown in Figure 2-1. Star type umbilical points are further classified into

Lemon Star Monstar

Figure 2-1: Three generic umbilics adapted from [91]

the hyperbolic star and the elliptical star type umbilical points. The umbilical diagram
shown in Figure 2-2 [96] is an easy way to distinguish the type of an isolated generic
umbilical point. In order to use this diagram, the local surface near an umbilical
point has to be represented as a height function or the Monge form with respect to a
local coordinate system as follows [74]:

r = (x, y, h(x, y)). (2.26)
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The height function h(x, y) is Taylor expanded at the origin of the local coordinate
system. Then we have

h(x, y) = −κ

2
(x2 + y2), (2.27)

+
1

6
(ax3 + 3bx2y + 3cxy2 + dy3) + O(4),

where κ is the normal curvature at the umbilical point. Let us set C(x, y) = ax3 +
3bx2y+3cxy2 +dy3. This expression implies that the local structure of a surface near
an umbilical point is dominated by the coefficients of C(x, y), i.e. by a, b, c, d, which
determine the type of umbilical points [79, 96]. It is convenient to represent the cubic
part C(x, y) in the complex plane for analysis purposes. If we set ζ = x + iy, then
C(x, y) becomes

Ĉ(ζ) = αζ3 + 3βζ2ζ + 3βζζ
2
+ αζ

3
, (2.28)

with

α =
1

8
[(a − 3c) + i(d − 3b)], (2.29)

β =
1

8
[(a + c) + i(b + d)],

where α 6= 0. We can express (2.28) in a coordinate system rotated about the normal
vector without losing any essential features to make the coefficient of ζ 3 equal to 1
[96]. Using ξ = α

1

3 ζ, equation (2.28) becomes

C̃(ξ) = ξ3 + 3ωξ2ξ + 3ωξξ
2
+ ξ

3
, (2.30)

where ω = βα− 1

3 α− 2

3 . This means that C(x, y) is parametrized with respect to a
single complex variable ω [17, 96]. Therefore, all variations of C(x, y) can be mapped
onto the complex plane [17, 79, 96]. When α = 0, equation (2.28) is reduced to

Ĉ(ζ) = 3ζζ(βζ + βζ). (2.31)

This equation corresponds to infinity in the ω complex plane [96, 17, 79], which is
not considered in this discussion.

Depending on the structure of C(x, y) (or C̃(ξ)), three characteristic lines are
determined as follows [96, 79]:

• Γ1 : θ → 1
3
(2eiθ + e−2iθ),

• |ω| = 1,

• Γ2 : θ → (2eiθ + e−2iθ),

where Γ1 and Γ2 are maps from θ to the ω complex plane. They divide the ω complex
plane into sub-regions as shown in Figure 2-2. Each sub-region corresponds to a
specific type of an umbilical point. In Figure 2-2, ES means the elliptic star, HS
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the hyperbolic star, MS the monstar and L the lemon. If ω falls on a dividing curve,
then the corresponding umbilical point is of non-generic type. The behavior of such
an umbilical point can be analyzed with more higher order terms [74]. Using this
diagram, the type of an umbilical point is easily determined, see [96, 17, 79]. A

1Γ

ESHS

HS

HS

MS

MS

MS

L

L

L

|ω|=1

2Γ

Figure 2-2: The umbilic diagram adapted from [96]

detailed discussion on the characteristic curves is presented in Appendix A.

2.2 Review of NURBS Curves and Surfaces

A NURBS (Non-Uniform Rational B-Spline) representation is the most general form
which includes integral B-spline and Bézier representations as special cases.

A NURBS curve q of order k is defined as follows:

q(u) =

∑m

i=0 wiQiNi,k(u)
∑m

i=0 wiNi,k(u)
, 0 ≤ u ≤ 1, (2.32)

where Qi are the control points, m + 1 the number of control points, wi the positive
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weights, and Ni,k(u) the B-spline basis functions defined by

Ni,1(u) =

{
1 ui ≤ u < ui+1

0 otherwise

Ni,k(u) =
u − ui

ui+k−1 − ui

Ni,k−1(u) +
ui+k − u

ui+k − ui+1
Ni+1,k−1(u), (2.33)

with a non-uniform and non-periodic knot vector

U = {u0, u1, · · · , uk−1
︸ ︷︷ ︸

k equal knots

, uk, uk+1, · · · , up−1, up
︸ ︷︷ ︸

p − k + 1 internal knots

, up+1, · · · , up+k
︸ ︷︷ ︸

k equal knots

}, (2.34)

which has k + p + 1 elements. A NURBS curve has the following properties [93, 91]:

• Geometry invariance property

• End points geometric property

• Convex hull property

• Local support property

• Variation diminishing property

Similarly, a NURBS surface r of orders k and l and (m + 1) × (n + 1) control points
is defined by

r(u, v) =

∑m

i=0

∑n

j=0 wijRijNi,k(u)Nj,l(v)
∑m

i=0

∑n

j=0 wijNi,k(u)Nj,l(v)
, 0 ≤ u, v ≤ 1 (2.35)

with non-uniform and non-periodic knot vectors U and V for u and v respectively,

U = {u0, u1, · · · , uk−1
︸ ︷︷ ︸

k equal knots

, uk, uk+1, · · · , up−1, up
︸ ︷︷ ︸

p − k + 1 internal knots

, up+1, · · · , up+k
︸ ︷︷ ︸

k equal knots

}

V = {v0, v1, · · · , vl−1
︸ ︷︷ ︸

l equal knots

, vl, vl+1, · · · , vq−1, vq
︸ ︷︷ ︸

q − l + 1 internal knots

, vq+1, · · · , vq+l
︸ ︷︷ ︸

l equal knots

}

where Rij are the control points, wij the non-zero weights, and Ni,k and Nj,l the
B-spline basis functions defined in (2.33). Most of the properties of NURBS curves
are also applied to NURBS surfaces. However, the variation diminishing property is
not applicable to NURBS surface patches.

The derivative of a NURBS curve q(u) or a NURBS surface r(u, v), however, is
complicated since denominators need to be considered in the derivative calculation.
Suppose that a NURBS curve is denoted as qN (u)

qD(u)
and a NURBS surface rN (u,v)

rD(u,v)
. Then,

the first derivative of q(u) with respect to u is given by

dq(u)

du
=

dqN (u)
du

qD(u) − qN(u)dqD(u)
du

q2
D(u)

. (2.36)
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The first derivative of r(u, v) with respect to u is given by

∂r(u, v)

∂u
=

∂rN (u,v)
∂u

rD(u, v) − rN(u, v)∂rD(u,v)
∂u

r2
D(u, v)

. (2.37)

Similarly, the first derivative of r(u, v) with respect to v is given by

∂r(u, v)

∂v
=

∂rN (u,v)
∂v

rD(u, v) − rN(u, v)∂rD(u,v)
∂v

r2
D(u, v)

. (2.38)

The positive weight provides an additional degree of freedom to control the shape.
If all weights are one, then the NURBS representation reduces to the integral B-spline
representation. Geometric entities that the integral B-spline formulation cannot rep-
resent such as conics (circle, ellipse and hyperbola) or quadrics, tori, cyclides, and
surfaces of revolution [75, 93] can be modeled exactly using the NURBS representa-
tion.
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Chapter 3

Mathematical and Computational
Prerequisites

Intrinsic properties of a surface such as lines of curvature, umbilical points and
geodesic curves, are full-fledged topics in differential geometry. Since they depend
only on the geometry of a surface, they are independent of parametrization and repre-
sentation methods, and invariant to the rigid body transformation such as translation
and rotation. Because of such features, they have been widely used for matching and
recognition purposes.

Accurate and robust evaluation of the intrinsic properties of a surface is important
in order to use them in the applications. If a surface is represented in implicit, explicit
or parametric form, then evaluation of the intrinsic properties is performed through
analytic or numerical differentiation to yield exact values. In some cases, however,
such evaluation alone is not enough depending on the applications. For example,
calculation of umbilical points requires to solve a set of nonlinear polynomial equations
which cannot be handled easily. In this case, the use of special tools is required.

This chapter is devoted to accurate and robust numerical calculation of various
intrinsic properties which are used for matching and copyright protection explained
in Chapters 4 and 5.

3.1 Literature Review

3.1.1 Umbilics

Umbilical points and the behavior of lines of curvature in the vicinity of umbilics
have attracted the interest of many researchers. Berry and Hannay [8] classified
the generic umbilics into three types, i.e. star, lemon and monstar, based on the
coefficients of the cubic part in the Taylor expanded representation of a local surface
and indices. They also showed the rarity of monstar patterns in the surfaces based
on the statistical singularity theory. Porteous [95, 96] gave a thorough mathematical
treatment of ridges and umbilics of surfaces, and Morris [79] studied ridges and sub-
parabolic lines in particular. He also provided practical formulae for calculating
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ridges and sub-parabolic lines with a bumpy cube as an example. Sander and Zucker
[103, 104] studied a problem of extraction of umbilical points from 3D images and
provided a computational method to identify umbilical points. An iteration scheme
for a functional minimization under the compatibility constraints is used to refine
the principal direction field and curvature estimates. The indices of the umbilics are
calculated in the direction field to classify them.

Sinha [108] calculated differential properties of a surface represented in range data
by using a global energy-minimizing thin-plate surface fit, and examined the effect of
changing parameters in the surface fitting stage on the differential properties of the
surface. Maekawa et al. [74] discussed a mathematical aspect of the generic features of
free-form parametric surfaces, described a method to extract them, and investigated
the generic features of umbilics and behaviors of lines of curvature around umbilical
points on a parametric free-form surface. They presented novel and practical crite-
ria which assure the existence of local extrema of principal curvature functions at
umbilic points. The survey paper of Farouki [40] on various techniques for interro-
gation of free-form parametric surfaces based on differential geometry, reviews the
theories of surface curvatures, and provides an integration method for lines of curva-
ture. Maekawa et al. [74] discussed possible problems that can be encountered in the
lines of curvature calculation and proposed a criterion to make the solution path not
reverse its direction.

3.1.2 Principal Patches

Principal patches are defined as the patches whose sides are lines of curvature [75, 76].
They depend only on the shape of the surface and are independent of the parametriza-
tion or representation methods. These properties have encouraged researchers to
study them for use in computational geometry and CAD applications. Martin [75, 76]
proposed a method for creating surface patches whose boundaries are lines of cur-
vature. Two constraints, i.e. the frame and the position matching equations, are
imposed on the boundary curves, which ensure that the boundary curves are lines of
curvature and the surface normals of two adjacent patches along the boundary are
the same so that the surface continuity is preserved. As a practical example for prin-
cipal patches, Dupin’s cyclides, which have circular lines of curvature, are taken and
discussed, and Dutta et al. [38] used cyclides in surface blending for solid modeling.
Sinha and Besl [109] reviewed mathematical aspects on principal patches and pre-
sented an engineering solution to creating global principal patch networks. A meshing
algorithm is proposed and the computational difficulties of building a quadrilateral
mesh based on integrated lines of curvature are discussed such as isolation of planar
and spherical regions, determination of directions of principal curvature, treatment of
umbilics, etc. A concept similar to principal patches was proposed by Thirion [115].
He defined the extremal mesh as the graph whose vertices are the extremal points or
umbilic points and whose edges are the extremal lines. The basic idea of the extremal
mesh is the same as that of principal patches but he used a new local geometric
invariant of 3D surface to resolve orientation problem arising in the construction of
the mesh. Brady et al. [15] analyzed several classes of surface curves as a source of
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constraint on the surface and as a basis for describing it, such as bounding contours,
surface intersections, lines of curvature and asymptotes. The surface is smoothed
out with appropriate 2D Gaussian masks which is based on convolution of the input
data with a Gaussian function and then operators to estimate the first and second
derivatives are used, leading to computation of the principal curvatures. Umbilics are
detected based on the principal curvatures, and lines of curvature are extracted by
minimizing a closeness evaluation function.

An umbilical point can be calculated from the fact that the principal curvatures
at that point are equal. For a surface represented in analytical form, this produces a
set of nonlinear system of equations which can be solved by using software tools such
as Matlab. When a surface is provided as range data, application of the condition for
umbilical point detection is not robust. A different approach needs to be introduced
such as the index calculation after refinement of principal curvature fields, see Sander
and Zucker [103, 104].

3.2 Rotation and Translation

Suppose that we have two 3-tuples mi and ni (i = 1, 2, 3), and correspondence
information for each point. From these points, a translation vector and a rotation
matrix can be calculated. The translation vector is easily obtained by using the
centroids of each 3-tuple. The centroids cm and cn are given by

cm =
1

3

3∑

i=1

mi, cn =
1

3

3∑

i=1

ni, (3.1)

and the difference between cm and cn becomes the translation vector tT = cn−cm. A
rotation matrix consists of three unknown components (the Euler angles). Since the
two 3-tuples provide nine constraints, the rotation matrix may be constructed by using
some of the constraints. But the results could be different if the remaining constraints
are used for the rotation matrix calculation [48]. In order to use all the constraints
equally, the least squares method may be employed [48]. The basic solution by Horn
[48] is described below. Suppose that the translation has been performed. Then what
is left is to find the rotation matrix R so that

Φ′ =
3∑

i=1

|ni − (Rmi)|2

=
3∑

i=1

|ni|2 − 2
3∑

i=1

ni · (Rmi) +
3∑

i=1

|Rmi|2 (3.2)

is minimized. Here, D =
∑3

i=1 ni · (Rmi) has to be maximized to minimize Φ′. The
problem can be solved in the quaternion framework. A quaternion can be considered
as a vector with four components, i.e. a vector part in 3D and a scalar part. A rotation
can be equivalently defined as a unit quaternion q̌ =

[
cos θ

2
, ax sin θ

2
, ay sin θ

2
, az sin θ

2

]
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which represents a rotation movement around (ax, ay, az) by θ degree. In the quater-
nion framework, the problem is reduced to the eigenvalue problem of the 4×4 matrix
H obtained from the correlation matrix M:

H =







s11 + s22 + s33 s23 − s32 s31 − s13 s12 − s21

s23 − s32 s11 − s22 − s33 s12 + s21 s31 + s13

s31 − s13 s12 + s21 s22 − s11 − s33 s23 + s32

s12 − s21 s31 + s13 s23 + s32 s33 − s22 − s11







, (3.3)

where

M =

3∑

i=1

nim
T
i =





s11 s12 s13

s21 s22 s23

s31 s32 s33



 . (3.4)

The eigenvector corresponding to the maximum positive eigenvalue is a quaternion
which minimizes equation (3.2). An orthonormal rotation matrix R can be recovered
from a unit quaternion q̌ = [q0, q1, q2, q3] by

R =





q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2



 . (3.5)

The procedure described above can also be applied to the case where more than three
corresponding point pairs are provided.

3.3 Lines of Curvature

Depending on the size of the coefficients, (L+κE) and (N+κG), either (2.12) or (2.13)
are selectively used to trace a line of curvature. Namely, if |(L + κE)| ≤ |(N + κG)|,
we solve (2.12). Otherwise, solve (2.13) to avoid numerical instability [3].

The factors η and µ are determined by using the normalization condition of the
first fundamental form. Since lines of curvature are arc length parametrized, the first
fundamental form is reduced to

E

(
du

ds

)2

+ 2F
du

ds

dv

ds
+ G

(
dv

ds

)2

= 1. (3.6)

Substituting (2.12) into (3.6), we can obtain η by

η =
±1

√

E(M + κF )2 − 2F (M + κF )(L + κE) + G(L + κE)2
. (3.7)

Similarly, we can calculate µ by

µ =
±1

√

E(N + κG)2 − 2F (N + κG)(M + κF ) + G(M + κF )2
. (3.8)
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The choice of the sign of η and µ is based on the following inequality [91] to maintain
the direction of the solution path:

∣
∣
∣
∣
−

(
dup

ds

∂rp

∂u
+

dvp

ds

∂rp

∂v

)

−
(

du

ds

∂r

∂u
+

dv

ds

∂r

∂v

)∣
∣
∣
∣

<

∣
∣
∣
∣

(
dup

ds

∂rp

∂u
+

dvp

ds

∂rp

∂v

)

−
(

du

ds

∂r

∂u
+

dv

ds

∂r

∂v

)∣
∣
∣
∣
,

where r = r(u(s), v(s)) is a line of curvature on the surface r with respect to the
arc length s and the superscript p means the previous step during the numerical
integration of the governing equations. A well known numerical method such as
Runge-Kutta method or Adams method is adopted as a solution scheme to the system
of nonlinear ordinary differential equations, see [91].

3.4 Geodesics

There are two types of geodesic problems which may arise in real applications: one is
the initial value problem (IVP) and the other is the boundary value problem (BVP).
For IVP, the fourth order Runge-Kutta method can be applied to (3.39) through
(3.43). However, in most cases, a geodesic problem comes in the form of BVP. It
is well known that the solution to IVP is unique, whereas BVP may have many
solutions or no solution at all. Two methods, the shooting method and the relaxation
method, are available for the solution to BVP. The relaxation method is considered
more stable than the shooting method [70]. What follows is a brief discussion about
the relaxation method and its application to the orthogonal projection of geodesic
curves.

Relaxation Method [70, 98, 91]

The boundary value problem can be solved with the relaxation method. It approxi-
mates ordinary differential equations (ODEs) with finite difference equations (FDEs)
on mesh points in the domain of interest [98, 70]. It starts with an initial guess and
then iteratively converges to the solution, which is called to relax to the true solution
[98]. Many schemes can be used to represent ODEs in the form of FDEs. In this
work, the trapezoidal rule is adopted [70].

Let us assume that we have a first order differential equation as follows:

dy

dx
= g(x, y). (3.9)

At two consecutive points k and k − 1, the trapezoidal rule turns equation (3.9) into

yk − yk−1 − (xk − xk−1)
1

2
(gk(xk, yk) + gk−1(xk−1, yk−1)) = 0. (3.10)

A set of differential equations can be represented in vector form so that it can be
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treated as a single differential equation. Suppose that

y = (y1, y2, · · · , yn)
T , g = (g1, g2, · · · , gn)T ,

α = (α1, α2, · · · , αn)T , β = (β1, β2, · · · , βn)T . (3.11)

Then, a system of first order differential equations with two boundary conditions at
A and B is given as follows:

dy

ds
= g(s,y), y(A) = α, y(B) = β, (3.12)

where s ∈ [A, B]. Equivalently, the vector equation (3.12) can be represented in the
finite difference form using the trapezoidal rule as follows:

Yk − Yk−1

sk − sk−1
=

1

2
[Gk + Gk−1] , k = 2, 3, · · · , m, (3.13)

with boundary conditions
Y1 = α, Ym = β, (3.14)

where a mesh of points satisfying A = s1 < s2 < · · · < sm = B is considered. Here,
the n-vectors Yk and Gk are discrete approximate values of yk(sk) and gk(sk).

Let us refer to equation (3.13) as

Fk = (F1,k, F2,k, · · · , Fn,k)
T =

Yk − Yk−1

sk − sk−1
− 1

2
[Gk + Gk−1] = 0, k = 2, 3, · · · , m

(3.15)
and equations (3.14) as

F1 = (F1,1, F2,1, · · · , Fn,1)
T = Y1 − α = 0,

Fm+1 = (F1,m+1, F2,m+1, · · · , Fn,m+1)
T = Ym − β = 0. (3.16)

Then we have mn nonlinear algebraic equations

F = (FT
1 ,FT

2 , · · · ,FT
m+1)

T = 0. (3.17)

The vector equation (3.17) can be solved by the Newton’s iteration scheme.
For a more stable solution, a step correction procedure can be adopted as follows

[70]:
Y(i+1) = Y(i) + µ∆Y(i), (3.18)

where 0 < µ ≤ 1 is chosen so that ||∆Y(i+1)||1 < ||∆Y(i)||1. Here ||∆Y||1 is defined
as:

||∆Y(i)||1 =
m∑

k=1

( |∆uk|
Mu

+
|∆vk|
Mv

+
|∆pk|
Mp

+
|∆qk|
Mq

)

, (3.19)

where Mu, Mv, Mp and Mq are the scale factors for each variable. The values of
Mu = Mv = 1 and Mp = Mq = 10 are used in the calculation, see [70, 91].
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3.5 Orthogonal Projection of Points and Curves

Orthogonal projection is a well-known concept, and has many engineering and sci-
entific applications. For example, in shipbuilding industry steel plates need to be
trimmed off along pre-defined trimming lines before assembly [92], and in inspection
of manufactured objects computation of orthogonal projection of measured points
onto the CAD surface is a critical step [91].

The idea of the orthogonal projection of a point or a curve onto a surface proposed
by Pegna and Wolter [92] is extended to include orthogonal projection of curves on a
surface such as a line of curvature and a geodesic curve. Instead of discretizing lines
of curvature or geodesic curves and then projecting the points, a set of differential
equations is formulated, which directly trace the orthogonally projected curve using
the concept of the orthogonal projection of a curve onto a surface by Pegna and
Wolter [92].

In this section, a brief review of the orthogonal projection of a point and a curve
by Pegna and Wolter [92] is provided followed by extension of the curve projection
idea to the orthogonal projection of lines of curvature and geodesic curves.

3.5.1 Introduction

A few assumptions need to be made that a surface onto which a point or a curve is
projected should be regular and second order continuous, a 3D curve remains close
enough to the surface, and the projected point or curve lies in the interior of the
surface. In this thesis, only a parametric surface r = r(u, v), (0 ≤ u, v ≤ 1) is
considered.

3.5.2 Points

The orthogonal projection of a point p onto a surface r is defined as a set of points
such that

Q(p, r) =

{

q|q = r(xq) s.t. (p − q) · ∂r(xq)

∂xi
= 0;xq = (x1

q, x
2
q), 0 ≤ i ≤ 2

}

.

(3.20)
The existence of the orthogonal projection is not always guaranteed when the surface
r has boundary, and more than one projected points may exist [92].

Formulation

The computation of an orthogonally projected point is easily done by Newton’s
method. Let us assume that p is a given point and q a projected point on a surface r.
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From the definition (3.20), two equations with two unknowns are obtained as follows:

f1 = (p − q) · ∂r

∂u
= 0,

f2 = (p − q) · ∂r

∂v
= 0. (3.21)

Suppose that F = [f1 f2]
T and x = (u, v)T . The correction δx which directs each fi

to zero can be obtained by
δx = −J−1F(x), (3.22)

where,

J =

[
∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v

]

. (3.23)

Then, the vector x is adjusted with the correction δx,

xnew = xold + δx. (3.24)

Iteration continues until |δx| becomes smaller than the user-specified tolerance.

3.5.3 Curves

The orthogonal projection of a curve onto a surface is a direct extension of the or-
thogonal projection of a point (3.20). What follows is a summary of the work by
Pegna and Wolter [92].

The orthogonal projection of a space curve onto a surface is defined as follows.
Let Γ(t) be a space curve with 0 ≤ t ≤ 1 and p is a point on Γ(t). Assuming that
the projection of curve r(t) onto the surface r is a curve R, then this curve is defined
as follows:

R = R(Γ(t), r) = {q|∃p ∈ Γ(t),q ∈ Q(p, r)} . (3.25)

Suppose we have a parametric surface r(u, v), (0 ≤ u, v ≤ 1) and a space curve
Γ(t) with a parameter t, (0 ≤ t ≤ 1). Then the equations of the projected curve of
Γ(t) onto r(u, v), or γ(t) = r(u(t), v(t)) are derived from the definition (3.25):

(γ(t) − Γ(t)) · ∂r

∂u
= 0,

(γ(t) − Γ(t)) · ∂r

∂v
= 0. (3.26)

We take the derivative of equations (3.26) with respect to t. Then we obtain the
following:

dγ(t)

dt
· ∂r

∂u
+ (γ(t) − Γ(t)) · d

dt

(
∂r

∂u

)

=
dΓ(t)

dt
· ∂r

∂u
,

dγ(t)

dt
· ∂r

∂v
+ (γ(t) − Γ(t)) · d

dt

(
∂r

∂v

)

=
dΓ(t)

dt
· ∂r

∂v
. (3.27)
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Using
dγ(t)

dt
=

∂r

∂u

du

dt
+

∂r

∂v

dv

dt
, (3.28)

and rearranging equations (3.27), we obtain the following:

[
du
dt
dv
dt

]

= K−1

[
dp

dt
· ∂r

∂u
dp

dt
· ∂r

∂v

]

, (3.29)

where

K =

[
∂r

∂u
· ∂r

∂u
+ (γ(t) − Γ(t)) · ∂2

r

∂u2

∂r

∂u
· ∂r

∂v
+ (γ(t) − Γ(t)) · ∂2

r

∂u∂v
∂r

∂u
· ∂r

∂v
+ (γ(t) − Γ(t)) · ∂2

r

∂u∂v
∂r

∂v
· ∂r

∂v
+ (γ(t) − Γ(t)) · ∂2

r

∂v2

]

. (3.30)

We know that

γ(t) − Γ(t) = ρN, N =
∂r

∂u
× ∂r

∂v∣
∣ ∂r

∂u
× ∂r

∂v

∣
∣
, (3.31)

where ρ = |γ(t) − Γ(t)|. Then, the matrix K is reduced to

K =

[
E + ρL F + ρM
F + ρM G + ρN

]

, (3.32)

where E, F and G are the first fundamental form coefficients, and L, M and N the
second fundamental form coefficients of r. The Runge-Kutta method can be used for
the solution of equations (3.29).

3.5.4 Lines of Curvatures

The orthogonal projection of a line of curvature can be calculated using equations
(3.29). Namely, the curve Γ in Section 3.5.3 is replaced by a line of curvature with
the arc length parametrization.

Suppose we have two surfaces rA = rA(uA, vA) and rB = rB(uB, vB), where 0 ≤
uA, vA ≤ 1 and 0 ≤ uB, vB ≤ 1. rB is a surface onto which a line of curvature is
projected, and rA is a surface on which the line of curvature is calculated. We denote
a line of curvature on the surface rA as ΓA(s) = rA(uA(s), vA(s)), where s is the arc
length parameter for rA. From equations (3.29), we obtain

[
duB

ds
dvB

ds

]

= K−1
B

[
dΓA

ds
· ∂rB

∂uB

dΓA

ds
· ∂rB

∂vB

]

, (3.33)

where

KB =

[
EB + ρLB FB + ρMB

FB + ρMB GB + ρNB

]

. (3.34)

Here, the subscript B indicates the quantities for the surface rB and the subscript A
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those for the surface rA. By the chain rule, we have

dΓA

ds
=

∂rA

∂uA

duA

ds
+

∂rA

∂vA

dvA

ds
. (3.35)

The differential equations for the line of curvature (2.12) or (2.13) are applied to the
surface rA. Therefore, we have differential equations for the orthogonal projection of
the line of curvature as follows:

duA

ds
= ηA(MA + κAFA) or µA(NA + κAGA), (3.36)

dvA

ds
= −ηA(LA + κAEA) or − µA(MA + κAFA), (3.37)

and
[

duB

ds
dvB

ds

]

= K−1
B





(
∂rA

∂uA

duA

ds
+ ∂rA

∂vA

dvA

ds

)

· ∂rB

∂uB(
∂rA

∂uA

duA

ds
+ ∂rA

∂vA

dvA

ds

)

· ∂rB

∂vB



 . (3.38)

These equations (3.36) to (3.38) can be solved by using Runge-Kutta method as the
initial value problem.

3.5.5 Geodesics

Suppose we have two surfaces rA = rA(uA, vA) and rB = rB(uB, vB), where 0 ≤
uA, vA ≤ 1 and 0 ≤ uB, vB ≤ 1, where rB is a surface onto which a geodesic curve is
projected, and rA is a surface on which the geodesic curve is calculated. We denote a
geodesic curve on the surface rA as ΓA(s) = rA(uA(s), vA(s)), where s is the arc length
parameter on rA. From (2.19) to (2.22), we can calculate duA

ds
and dvA

ds
. Combining

all of them, we obtain two sets of differential equations as follows:

duA

ds
= p, (3.39)

dvA

ds
= q, (3.40)

dp

ds
= −Γ1

11p
2 − 2Γ1

12pq − Γ1
22q

2, (3.41)

dq

ds
= −Γ2

11p
2 − 2Γ2

12pq − Γ2
22q

2, (3.42)

and
[

duB

ds
dvB

ds

]

= K−1
B





(
∂rA

∂uA
p + ∂rA

∂vA
q
)

· ∂rB

∂uB(
∂rA

∂uA
p + ∂rA

∂vA
q
)

· ∂rB

∂vB



 , (3.43)

where KB is the matrix K of (3.32) for the surface rB.
Application of the relaxation method to the orthogonal projection of geodesics

in BVP form is an extension of the work by Maekawa [70, 91]. Additional two
differential equations (3.43) are obtained which trace orthogonally projected curves
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on the target surface rB with the arc length parameter of the model surface rA. These
two equations are turned into equivalent finite difference equations and provided for
the solution scheme.

Six values are needed to solve the problem. Let us denote two boundaries b1 and
b2, respectively. First, at both boundaries, we have four parametric values ub1, vb1 , ub2

and vb2 . These four parametric values are enough to determine a geodesic curve
between b1 and b2 on the model surface. The remaining two values denoted as uB0

and vB0, which are initial values of the projected geodesic curve on the target surface
are applied to the differential equations (3.43).

3.5.6 Calculation of Initial Values

Tracing a curve projected on a surface is, in general, formulated as the initial value
problem. Therefore, selection of initial values is an important step for an accurate
solution.

In the problem of the orthogonal projection of a curve onto a surface, the starting
point of the curve is provided, and from this point an initial point for the orthogo-
nally projected curve has to be calculated. Since we are dealing with the orthogonal
projection, it would be a reasonable choice to use an orthogonally projected point
of the starting point of the curve by using equations (3.21) which can be solved by
Newton’s method. However, it requires a good initial approximation for the solution
to (3.21). In this work, the IPP algorithm is used to find an initial point by solving
(3.21) robustly [125].

3.5.7 Examples

Lines of Curvature

Two B-spline surfaces with 16 (4×4) control points as shown in Figure 3-1 are used for
demonstration of the orthogonal projection of lines of curvature. The upper surface
is the model surface on which a line of curvature is calculated and the lower surface
is the target surface where the line of curvature is projected. Four initial values are
provided: two values are u0 = 0.3 and v0 = 0.3 for the line of curvature on the model
surface, and the other two are uB = 0.3003 and vB = 0.2995 for the initial values of
the orthogonally projected curve on the target surface. A line of curvature and its
projection on the target surface are presented in Figure 3-1.

Geodesic Curves

Two B-spline surfaces as shown in Figure 3-2 are selected. The upper surface is the
model surface with 16 (4×4) control points on which a geodesic is calculated and the
lower surface with 16 (4 × 4) control points is the target surface where the geodesic
curve is projected. Two end points are given so that the problem is treated as BVP.
In total, six boundary values are necessary. Four parametric values of two boundary
points α and β, ub1 = 0.2, vb1 = 0.3, ub2 = 0.8 and vb2 = 0.9 are provided as input
to the solution of the geodesic curve on the model surface. The parametric values
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Figure 3-1: The orthogonal projection of a line of curvature

uB0 and vB0 are 0.2002 and 0.2987, which are used as initial values of the projected
curve on the target surface. A straight line between (ub1 , vb1) and (ub2, vb2) is used as
an initial approximation of the solution. Thirty three discrete mesh points are used
at each of which ODEs are turned into FDEs using the trapezoidal rule. Figure 3-2
shows the result which is obtained after five iterations under the tolerance ε = 10−5.

3.6 Extraction of Umbilical Points

Umbilical points appear in various forms on a free-form surface such as isolated points,
lines or regions. Because of the singular behavior of the principal direction field
around the umbilics, information on their locations is important in surface-intrinsic-
wireframing (see Section 3.7), and in selection of reference points for matching. More-
over, isolated generic umbilical points need to be located and classified for the strong
test of decision algorithms for similarity (see Chapter 5). Therefore, a robust and
efficient algorithm for extraction of umbilical points and regions is necessary, and is
presented below.

The quadtree decomposition is used to extract umbilical points or regions from
a free-form NURBS surface. Such decomposition has been used for various purposes
such as intersection problems [33] and computer graphics [102]. Combining the convex
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Figure 3-2: The orthogonal projection of a geodesic

hull property of the Bernstein polynomials, the quadtree decomposition provides an
efficient method for extraction of umbilical points from the free-form NURBS surface,
especially when the umbilics are not isolated.

A NURBS surface is first subdivided into rational Bézier surface patches by knot
insertion and the governing equations (2.24) are formulated for each resulting rational
Bézier surface patch, which are reduced to equations (2.25). The graph of z =
PN(u, v) (0 ≤ u, v ≤ 1) is represented over the uv parametric plane. The condition
PN(u, v) ≥ 0 assures that no portion of PN lies below the uv plane, i.e. PN has no
negative value. Suppose that PN = (u, v, PN). Given an integral Bézier surface patch
of degree m and n in u and v, PN(u, v) in the bivariate Bernstein form is given by
[74]:

PN(u, v) =

10m−6∑

i=0

10n−6∑

j=0

pijBi,10m−6(u)Bj,10n−6(v), (3.44)

and for a rational Bézier surface patch of degree m and n in u and v, PN is given by
[74]:

PN(u, v) =
24m−6∑

i=0

24n−6∑

j=0

pijBi,24m−6(u)Bj,24n−6(v), (3.45)

where pij are Bernstein coefficients. Then the detection problem is reduced to find

37



a set of (u, v) which satisfy PN(u, v) = 0, or the zero-set of a bivariate Bernstein
polynomial (3.44) or (3.45). An adaptive quadtree decomposition on the uv domain
is used to narrow down regions possibly containing umbilical points. A rectangular
domain is subdivided into four rectangular domains at the mid points of u and v
using the de Casteljau algorithm. This algorithm can be robustly executed in rounded
interval arithmetic. At a depth d, there are at most 4d nodes and each node has a
domain of size r2−d ≤ u ≤ (r + 1)2−d and s2−d ≤ v ≤ (s + 1)2−d where r and s
are integers of 0 ≤ r ≤ 4d−1 and 0 ≤ s ≤ 4d−1, respectively. Figure 3-3 shows an
example of the quadtree decomposition. The depth of the quadtree depends on the
user-specified size of subdivided regions.

0 1

1

0.5

0.5 0

1

2

depth (d)

Figure 3-3: An example of the adaptive quadtree decomposition (The marked dark
domains indicate those which possibly contain umbilical points.)

The strategy of the adaptive quadtree decomposition algorithm for extraction of
umbilical points is to eliminate the regions which do not include any umbilical points
using the convex hull property. The convex hull property determines if a subdivided
region does not contain roots of PN(u, v) = 0 or not. This property assures that if
all Bernstein coefficients in a subdivided region are positive, then the Bézier surface
patch in that region should lie above the uv plane, which means that no umbilical
point exists in the region. Note that the reverse is not necessarily true. The algorithm
checks the signs of the Bernstein coefficients in a subdivided region. If all of them
are positive, the node of the corresponding region is marked as a non-umbilic region.
The algorithm stops at a depth df where the size of the regions of the nodes at df is
less than the user defined tolerance. We traverse the tree and collect the unmarked
nodes to produce the regions which possibly contain umbilical points.

It is not known a priori how many nodes will be generated in general. But because
we can estimate the maximum depth required to achieve a given accuracy, we can
perform the worst case analysis. Given a tolerance δumb, the algorithm stops when the
size of a subdivided domain at a depth d, or 2−d is less than δumb. Let us assume that
2−d < δumb and the algorithm has stopped. Subdivision happens twice at every node
up to depth d − 1. Therefore, the total number of applications of the de Casteljau
algorithm becomes 2

∑d−1
j=0 4j. For a Bézier surface patch of degree m and n in the u

and v, the application of the de Casteljau algorithm in u parameter requires O(m2).
Hence, the complexity of the worst case is reduced to O(4d(m2 + n2)).
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The IPP algorithm [74, 91, 106] can also be used for extraction of umbilics. But
when the IPP algorithm encounters regions of umbilical points, it slows down dra-
matically. The quadtree decomposition method is efficient in dealing with lines or
regions of umbilical points because it employs an adaptive subdivision scheme and
only requires subdivision using the de Casteljau algorithm, whereas the IPP algo-
rithm needs not only subdivision but also calculation of convex hulls and projection
onto a hyperplane. However, since it belongs to the subdivision class of methods, the
proposed method is unable to differentiate multiple roots [106, 91].

Examples

An integral bicubic Bézier surface patch [74] is used for extraction of isolated umbilical
points. The patch contains five umbilical points as shown in Figure 3-4. Table 3.1
summarizes the exact parametric values of each umbilical point adapted from [91, 74]
and the boxes from the subdivision extraction algorithm. The calculation is performed
with a tolerance of 0.005. Table 3.1 shows that the estimated boxes contain the exact

Exact Location Estimation
No. (u, v) [ua, va] × [ub, vb]
1 (0.211, 0.052) [0.2109, 0.0508]× [0.2148, 0.0547]
2 (0.211, 0.984) [0.2109, 0.9807]× [0.2148, 0.9844]
3 (0.789, 0.052) [0.7852, 0.0508]× [0.7891, 0.0547]
4 (0.789, 0.984) [0.7852, 0.9807]× [0.7891, 0.9844]
5 (0.500, 0.440) [0.4961, 0.4375]× [0.5039, 0.4414]

Table 3.1: Comparison of positions of isolated umbilical points

location of the umbilical points computed via the IPP algorithm solving (2.25) at a
higher precision of 10−12.

The next example shows a line of umbilical points on a surface. The input surface
is a developable cubic-linear surface adapted from [91, 71]. The surface has an inflec-
tion line at u = 0.5754 computed via the IPP algorithm with a precision of 10−12. The
proposed algorithm with a tolerance 0.005 produces a series of boxes which contain
0.5754 as follows:

[0.5742, 0.0] × [0.5781, 0.0039] ,

[0.5742, 0.0039]× [0.5781, 0.0078] ,
...

[0.5742, 0.9961]× [0.5781, 1] .

Those boxes are mapped onto the surface in a series of small boxes as shown in Figure
3-5.

An example of extraction of a planar region is presented in Figure 3-6. It is a
bicubic B-spline surface which is partially planar, with 20 × 20 control points in the
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Figure 3-4: An example of isolated umbilical points on uv domain and the surface
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Figure 3-5: An example of a line of umbilical points
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u and v directions. The extracted planar region of the surface is shown in Figure 3-6.

Figure 3-6: Extraction of planar region

3.7 Shape Intrinsic Wireframing

In this section, a method for surface-intrinsic-wireframing using lines of curvature and
geodesic curves is explained, which will not be affected by parametrization, any rigid
body transformation and representation methods. From this wireframe, reference
points are selected for comparison and surface matching.

3.7.1 Overall Structure

An algorithm for the construction of intrinsic wireframing is shown in Figure 3-7. A
NURBS surface is provided as input. As the principal directions are indeterminate at
umbilical points, we need to locate such points prior to wireframing. Next a starting
point is selected, from which wireframe creation begins. It continues until lines of
curvature cannot be traced any longer. The remaining area is covered with geodesic
curves. If the entire surface has been wireframed sufficiently densely according to
appropriate user-specified thresholds, the algorithm stops.

Input Surfaces and Umbilics (Steps 10 and 12)

Information on exact locations of umbilical points is essential for wireframing using
lines of curvature because the principal directions cannot be uniquely defined there
so that the lines of curvature cannot be traced properly. Therefore, surfaces need to
be provided as input to the algorithm with complete information of isolated umbilical
points, spherical or planar regions, or lines of umbilical points extracted by using the
quadtree decomposition method of Section 3.6.

41



Start

Input Surface

Locate umbilical
points

Choose a starting
     point

Construct wireframe
using lines of 

curvature

Construct wireframe
using geodesics

Wireframing 

Using lines 
of curvature

is complete?

is possible?

End

Yes No

10

12

14

16

22

18 20

Yes

No

Figure 3-7: A diagram of the algorithm

Starting Points (Step 14)

Either a star type umbilical point or a non-umbilical point can be chosen as a starting
point for wireframing because the maximum and minimum lines of curvature radiate
from the point in an alternating pattern so that a simple algorithm is sufficient and
the resulting mesh is more well-proportioned. The other two types of umbilics, i.e.
lemon and monstar, are not appropriate for this purpose. Three lines of curvature pass
through a star umbilical point, each of which changes its attribute from the maximum
line of curvature to the minimum line of curvature or vice versa. Therefore, at the
star type umbilical point, we can imagine that six lines of curvature radiate from
the umbilical point so that we can use up to six initial directions for tracing lines of
curvature. When there is no umbilical point on the surface, a non-umbilical point is
chosen as a starting point. The non-umbilical point has the maximum and minimum
lines of curvature intersecting orthogonally. Thus, we can choose up to four directions
for tracing the lines of curvature.
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Wireframing with Lines of Curvature (Step 18)

Lines of curvature are calculated by solving equations (2.12) or (2.13) using for ex-
ample the fourth order Runge-Kutta method.

An intersection point of the maximum and minimum lines of curvature can be
calculated accurately using Newton’s method. Let us assume that a maximum line
of curvature L1 and a minimum line of curvature L2 intersect as shown in Figure 3-8.
Using the arc length s1 as a parameter, L1 can be represented as

u1 = u1(s1), v1 = v1(s1). (3.46)

Similarly, L2 is
u2 = u2(s2), v2 = v2(s2), (3.47)

where s2 is the arc length parameter. The problem can be stated to find s1 and s2 so
that

s 1 s 2

u (s ) = u2(s 2)1 1

Min.

V V

V

Max.

1 2

3

1 1v (s ) = v2(s 2)

Figure 3-8: Intersection of lines of curvature

F(x) =

(
f(s1, s2)
g(s1, s2)

)

=

(
u1(s1) − u2(s2)
v1(s1) − v2(s2)

)

=

(
0
0

)

, (3.48)

where x = (s1, s2)
T . The multivariate Newton’s method can be adopted as a solution

method. Equation (3.48) is Taylor expanded to obtain F(x+δx) = F(x)+J·δx, where
δx = (δ1, δ2)

T and J is the Jacobian matrix of F which can be calculated numerically
using equations (2.12) or (2.13). Two tolerances δ1 and δ2 for the variables s1 and s2

are provided for termination of the iteration of Newton’s method.

Geodesic Wireframing (Step 20)

In a region where the algorithm using lines of curvature fails, i.e. in the neighborhood
of an umbilical point (except the umbilical point used as a starting point) and near
a boundary or in an umbilical region, a geodesic curve can be used to complete
wireframing. A geodesic problem comes in the form of a boundary value or an initial
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value problem. However, the problem arising in wireframing is always formulated as
a boundary value problem (BVP) and a solution method for BVPs is adopted. Two
points are selected and a geodesic line is calculated which connects them. As an initial
approximation, a straight line connecting two boundary points is used, from which a
solution is obtained iteratively by using the relaxation method, see [91, 98, 70].

3.7.2 Algorithms for Constructing Quadrilateral Meshes

The proposed algorithm is semi-automatic so that in order to complete a wireframe of
a free-form surface a user may need to work iteratively. An automatic routine handles
wireframing using lines of curvature. After a starting point has been selected, the
routine constructs quadrilateral meshes (mostly orthogonal meshes) radiating from
the starting point. An outline of this procedure follows:

1. Advance L1 and L2 from V0 by a user defined distance to reach V1 and V2 points
as shown in Figure 3-9. Here, we assume that L1 and L2 are the maximum and
the minimum lines of curvature, respectively.

2. Choose the minimum line of curvature (L′
1) at V1 and the maximum lines of

curvature (L′
2) at V2.

3. Find an intersection point V3 of L′
1 and L′

2.

V

V
V

V
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Figure 3-9: A diagram for meshing algorithm

This routine continues until no more intersection point can be obtained, i.e. when
lines of curvature hit either boundary or umbilical points. In a region that lines
of curvature cannot cover, a user inserts additional nodes and connects them using
geodesic curves. Figure 3-10 shows an example of intrinsic wireframing. This example
has 413 nodes, 356 quadrilateral and 14 triangular elements.
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Figure 3-10: Intrinsic wireframe
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3.7.3 Implementation

A computer program was developed to integrate all algorithms to generate wireframe
of a NURBS surface. It consists of two windows. One is to visualize a surface and
wireframe in 3D space, and the other, which is denoted as the control window, is
to provide an interface for a user to interface with the wireframe when user input is
needed. The visualization window is created based on OpenGL. It provides functions
for rotation and scaling for better visualization. The control window has a parametric
domain. It shows the current status of the parametric domain during wireframing.
Several options are provided for interactive operation. The language used in the

Figure 3-11: A visual window for wireframing

development is C++. A set of window managing libraries, Qt-2.3.1, are used for
graphical user interface. Figures 3-11 and 3-12 show intermediate results of our
algorithms.
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Figure 3-12: A control window for wireframing
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3.7.4 Analysis of the Algorithm

The overall time complexity of the automatic part of the wireframing algorithm is
hard to determine because the total number of nodes that will be generated cannot
be predicted in advance before execution. The only parameter which can control the
density of the node points is the distance that the meshing algorithm advances from a
starting point. The mesh creating algorithm consists of advancing lines of curvature
and calculating a node which is obtained by locating the intersection point between
a maximum and a minimum lines of curvature. The accuracy and elapsed time of
advancing lines of curvature depends on the step size of the numerical integration
routine such as Runge-Kutta method. Finding the intersection point is based on
Newton’s method so that a quadratic convergence is achieved.

3.8 Interval Projected Polyhedron Algorithm

3.8.1 Robustness in Numerical Computation

Floating point arithmetic (FPA) is commonly used in current CAD systems. However,
arithmetic operations in FPA such as division, sometimes, result in serious errors
during the computation. This numerical instability may cause a change of topological
structure of a model or miss of roots in solving a system of equations. Such problems
mainly arise due to the limited precision inherent to the internal representation of a
floating point in digital form in the computer.

Most of commercial computer systems adopt ANSI/IEEE Std 754-1985 Standard
for Binary Floating Point Arithmetic to represent a floating point value [4]. Due to the
nature of digitization of the representation, some floating points cannot be represented
exactly in the system. The floating point numbers that can be represented exactly are
finite and distributed non-uniformly. Therefore, rounding methods defined in IEEE-
754 have to be used to approximate the values that cannot be represented exactly,
which means that the errors introduced in the rounding may propagate during the
calculation so that the final results may end up containing significant errors.

To avoid such problems, all calculations can be performed in rational arithmetic.
But it is memory intensive and time consuming [91]. On the other hand, one can use
a special purpose library such as GNU multiple precision arithmetic [44] to overcome
the limitation of precision. However, it also poses similar problems as those of rational
arithmetic.

A different approach to get around the problems of floating point arithmetic is
to use rounded interval arithmetic (RIA). An interval is a representation unit which
encloses an exact floating point value. Even though an exact value may not be ob-
tained in rounded interval arithmetic, rounded interval arithmetic guarantees that an
interval contains an exact floating point value during the calculation, and operations
which are prone to errors such as division, can be performed robustly. The actual
execution load for rounded interval arithmetic lies between rational arithmetic and
floating point arithmetic.
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3.8.2 Brief Review of Interval Projected Polyhedron Algo-
rithm

The basic idea of the proposed work in Chapter 4 is to cast the matching problem
to the solution of a nonlinear system of equations. Therefore, robust detection of all
roots of the system is critical for the robustness of the proposed matching methods.
A robust and efficient method, the interval projected polyhedron (IPP) technique is
used in this work [106, 91, 72, 2].

The algorithm belongs to the subdivision-based class of techniques and makes use
of the Bernstein polynomial properties: the convex hull property, the linear precision
property and subdivision to narrow down the regions containing the real roots of
systems of a nonlinear polynomial equation system. The key aspect of this algorithm
is to change the algebraic problem of finding roots into the geometric problem of
finding intersections between the axes and the hypersurfaces. A detailed description
of the IPP algorithm can be found in [106, 72, 91] together with various applications.

In order to avoid the adverse effects of numerical error in floating point arithmetic,
rounded interval arithmetic is employed for the implementation of the IPP algorithm.

Suppose that we have a set of n nonlinear polynomials f1, f2, · · · , fn and each fi

is a function of l independent variables x1, x2, · · · , xl and degree mi for each variable.
The problem is to find all points x = (x1, x2, · · · , xl) such that

f1(x) = f2(x) = · · · = fn(x) = 0. (3.49)

The total asymptotic computation time per step is of O(nlml+1) [106, 91], where
m = max(mi). In this work, the system of equations (4.6) is used and during the for-
mulation, the auxiliary variable method is also used to remove the square root terms.
So the system becomes three dimensional (n = 3) and the number of independent
variables is three (l = 3), i.e. u, v and one auxiliary variable nd. Therefore, the time
complexity per step of the algorithm becomes O(m4).

3.9 Conclusions

In this chapter, robust numerical calculation methods for lines of curvature, geodesic
curves, umbilical points and orthogonal projection are developed. Those algorithms
are incorporated into the shape intrinsic wireframing algorithm to create shape intrin-
sic wireframe of a NURBS surface. Such a wireframe is independent of parametriza-
tion and the rigid body transformation, and they can be used as a unique representa-
tion of a given surface combined with the patterns of isolated generic umbilical points
which are stable against small perturbations and behave like fingerprints of a surface.

The wireframe is used to select reference points for comparison. Since it is based
on the shape intrinsic properties, the same reference points can be obtained all the
times irrespective of parametrization and the rigid body transformation.
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Chapter 4

Object Matching

A basic goal of matching is to find the best rigid body transformation which aligns
two objects as closely as possible. The correspondence search between two surfaces is
a key issue in finding the best transformation for matching. Correspondence can be
established by calculating distinct features of one object and locating the same ones
on the other object. Therefore, the features have to be carefully chosen such that
they are robustly extracted and invariant with respect to geometric transformations.
Among various features, intrinsic differential properties have been used for matching
purposes. They are independent of parametrization and methods of representation,
and only depend on the geometric shape of the object. Moreover, they are invariant
under any rigid body transformations (rotation and translation).

Two types of matching can be considered: global and partial. Simply, the global
matching is regarded as the matching for whole objects, while the partial matching
is considered as the matching of part of objects. Matching problems can be further
categorized based on the availability of correspondence or initial transformation in-
formation between two objects and the application of scaling. The classification of
matching problems is summarized in Table 4.1. In the table, acronyms are used for
simplification as follows:

• C : Correspondence information is provided.

• I : Initial information on correspondence is provided.

• N : No correspondence information is available.

• P : Partial matching.

• G : Global matching.

• WOS : Without scaling.

• WS : With scaling.

When correspondence information is provided, which is one of the types CGWOS
or CPWOS, then a matching problem simply is reduced to calculation of the rigid
body transformation [48, 49]. If no correspondence is known, but a good initial
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Global Matching Partial Matching
Criteria

Without Scaling With Scaling Without Scaling With Scaling
Correspondence

Information
CGWOS CGWS CPWOS CPWS

Initial Information IGWOS IGWS IPWOS IPWS
No Information NGWOS NGWS NPWOS NPWS

Table 4.1: Classification of matching problems

approximation for the transformation is available (IGWOS or IPWOS), then popular
iterative schemes such as the Iterative Closest Point (ICP) algorithm [10] can be
employed. However, when no prior clue for correspondence or transformation is given
(NGWOS or NPWOS), the matching problem becomes more complicated. In this
case, the solution process must provide a means to establish such correspondence
information such as in [25].

Scaling is another factor that needs to be considered separately. If a matching
problem involves scaling effects, then direct comparison of quantitative measures can-
not be used any longer. For the global matching case, a scaling factor can be estimated
by the ratio of surface areas and applied to resolve the scaling transformation. How-
ever, when it comes to partial matching, such area information becomes useless for the
scaling factor estimation. When the correspondence information between two objects
is known (CGWS or CPWS), the scaling factor between the objects can be easily
obtained by using the ratio of Euclidean distances between two sets of corresponding
points or areas. If an initial scaling value, as well as a good initial approximation
is provided (IGWS or IPWS), the ICP algorithm by Besl [10] or other optimization
schemes such as the quasi-Newton method [98] can be employed. The problem of
NGWS type can be solved by the moment method using the principal moment of
inertia and ratio of areas or volumes. No attempt, however, has been made to solve
the problems of NPWS type.

In this chapter, algorithms are proposed to solve all types of matching problems
in Table 4.1 with emphasis on the matching problem of NPWS type. Algorithms for
establishing correspondences are proposed, which do not include scaling effects. They
are extended to deal with scaling effects. Similarity is evaluated by tests using the
Euclidean distance, principal curvatures and directions, and umbilical points, which
are provided as input to decision algorithms described in Chapter 5.

This chapter is constructed as follows: in Section 4.1, previous work on matching
is classified and reviewed, and mathematical problem statements used in this thesis
are presented in Section 4.2. Section 4.3 briefly introduces surface fitting methods
followed by three matching criteria used for similarity evaluation in Section 4.4. In
Section 4.5, a global method, the moment method, is explained which is used for
matching solids. In Section 4.6, two methods for establishing correspondences be-
tween two objects are proposed followed by two algorithms and their theoretical
analysis, which include uniform scaling effects in Section 4.7. Section 4.8 discusses
performance issues involved in the algorithms and Section 4.9 concludes this chapter.
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4.1 Literature Review

4.1.1 Moment Theory

Moment theories for 2D or 3D objects have been extensively employed for object
matching, recognition, classification, etc. Both invariant and non-invariant features
of moments of an object have been of primary interest to researchers, and there is
extensive literature on this topic.

First order moments (center of mass) and second order moments (moments of
inertia) can be used for pose estimation. Novotni and Klein [83] used geometric
moments up to second order to bring inspected objects into a standard pose. They
resolved ambiguity of aligning principal directions with a reference coordinate system
by voxelizing the objects and choosing one of all the possible directions which gives
the minimum difference of volume between the two objects (XOR (eXclusive OR)
operation between the volumes occupied by the objects which produces the voxels
which belong to each object, but not both). Galvez and Canton [43] used the center
of mass and moments of inertia of a 3D shape for shape recognition. A heuristic
procedure to avoid the ambiguity in matching principal axes for a 3D object was
presented. They calculated the distance from the centroid to the point determined
by the intersection of each coordinate axis with the bounding object surface and orient
the eigenvector based on the distance values.

The method of principal axes, however, is not robust for rotationally symmetric
objects, i.e. objects with no unique set of principal axes. Many efforts have been made
to develop a technique to achieve the moment invariants with respect to not only scale
and position but also rotation. The first significant contribution was made by Hu [51],
who proposed seven moment invariants for 2D images based on the invariant algebra
theory. The concept of 2D moment invariants was extended to 3D by Sadjadi and
Hall [100].

Several attempts were made to improve Hu’s work. Some fast algorithms were
proposed for computing moment invariants by Li et al. [67] and Zakaria et al. [122].
Li et al. used an iterative scheme for moment calculation which needs no multiplica-
tion and Zakaria et al. presented delta method for fast invariant moment computation
of contiguous images. Modified moment invariants were proposed by Chen [22], which
involve the calculation along the shape boundary to reduce the amount of computa-
tion. Lia and Pawlak [68] carried out the discretization error analysis for moment
computation and proposed a new technique to improve the accuracy and efficiency of
moment calculation. They also examined the inverse moment problem of reconstruc-
tion of an image.

Various moment invariants and use of orthogonal moments such as Zernike mo-
ments and Legendre moments have been investigated. Prokop and Reeves [99] per-
formed a comprehensive survey on moment-based techniques for object representation
and recognition. They reviewed fundamental theories on moments and assessed var-
ious moment-based approaches.
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4.1.2 Principal Component Analysis

The principal component analysis known as the Karhunen-Loève transformation [42]
is based on the orthogonal set of eigenvectors of an image set which allows a com-
pact representation of an object for various purposes such as object recognition, pose
estimation, image compression, etc. One or more multidimensional spaces are con-
structed based on the eigenvectors which are obtained from a statistical analysis of the
ensemble of training images. An object is projected onto the eigenspace and stored as
a vector with respect to the eigenspace. By comparing model and image vectors the
best matched object is obtained in the database. For more detailed information, see
[20]. The eigenspace approach is popular in recognition of human faces [118, 59], and
much research for its application to 3D object recognition has been performed up to
now. Murase and Nayar [81] proposed a method for recognition of 3D objects, which
is based on the eigenspace. Two eigenspaces are used: one is the universal eigenspace
computed by using all different kinds of training images of interest for recognition to
identify an object in the input scene, while the other is the object eigenspace obtained
from various images of an object for pose estimation. Each of the training images is
projected to eigenspace so that each object falls on a manifold parametrized by pose
and illumination (called parametric eigenspace). Recognition of an object is done by
checking on which manifold the object is placed, and using the cubic interpolation on
the manifold, the object’s pose can be determined. Murase and Nayar [80] also used
the same parametric eigenspace approach to determine the illumination condition
which enhances differentiability in appearance and Nene and Nayar [82] improved
performance of the nearest neighbor search in high dimension, which is used in find-
ing the closest vector in eigenspace. The parametric eigenspace for object recognition
by Murase and Nayar has, however, potential problems with background clutter and
partial occlusions. These problems were discussed by Krumm [63], who proposed an
algorithm that uses several small rectangular image patches which constitute features
of each object, rather than one large patch. The parametric eigenspace idea is ap-
plied to the features and they are matched using a median distance measure. The
Eigen Window method which is similar to Krumm’s approach was proposed by Ohba
and Ikeuchi [84] for recognition of partially occluded objects. Small windows which
contain multiple partial appearance are applied to the original images and projected
onto the eigenspace. The selection of the optimal set of eigen windows is discussed
based on three measures: detectability, reliability and uniqueness to reduce memory
requirements. The occlusion problem was also discussed by Leonardis and Bischof
[65] which was extended in [66]. A novel approach was adopted for calculation of the
coefficients of eigenimages to obtain robustness in coefficient calculation, which leads
to cope with the problems arising in occlusion and segmentation. A number of trials
that lead to a set of hypotheses with respect to both error and compatibility of points
are made by randomly selecting image points from the scene (hypothesize-and-test
paradigm) and a good hypothesis is chosen based on the Minimum Description Length
Principle. This method demonstrates the ability to reconstruct unseen portions of
the object. In [11], the application of Leonardis and Bischof’s method [65] to large
and scaled images through a multi resolution approach was discussed, and problems
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for missing pixels in the image were dealt with by Skocaj and Leonardis [110]. Black
and Jepson [13] proposed another robust estimation techniques of the coefficients
in the eigenspace. A robust error norm is used for estimation of the coefficients in
the eigenspace method to reduce large residual errors which undermines traditional
eigenspace methods. Campbell and Flynn [19] extended the eigenspace recognition
approach to deal with 3D objects in range images. A set of eigensurfaces are created
which capture the shapes of objects in various orientations. Recognition of an object
is done by finding the nearest vector in the eigenspace. 3D rotational pose estima-
tion is discussed in the paper. Huang et al. [52] used the eigenspace approach to
represent parts of an object and their relations. The parts are collected based on the
minimum description length principle (MDL) and each part is encoded by construct-
ing parametrized manifolds in eigenspaces. Additionally, using more than one part
establishes eigenspaces representing spatial relations. This representation is robust
to occlusion. Camps et al. [21] extended their previous work [52] by enhancing the
discriminatory power and the method of organization of large databases.

4.1.3 Contour and Silhouette Matching

2D contours which are extracted from 3D objects have been used for recognition.
Mokhtarian [78] developed an object recognition system based on the silhouettes
of the 3D object using Curvature Scale Space (CSS). The physical boundaries are
obtained from the silhouette images and then classified as either convex or concave
from which CSS representations are computed. CSS maxima are used to find the best
matching silhouettes which are verified by registering them and measuring errors.
Josh et al. [55] proposed a HOT curve representation of smooth curved 3D shapes.
HOT curves (where High Order Tangential contact with a surface exist) are a non
parametric, discrete representation which determines the structure of image contours
and its catastrophic changes. Five categories of HOT curves are maintained such
that their position, direction of the surface normal and direction of the tangent are
recorded. The scale independent parameters coming from angles between the tangents
line and the ratios of distances between features are estimated and used to index a
recognition table. Chen and Stockman [23] proposed a method to recognize a free-
form 3D object from a single 2D view of a 3D scene. Edge features are extracted for
generating and verifying hypotheses from the silhouette curves in the intensity images,
and part invariant attributes are used for indexing against the model database, which
leads to matches between possible model parts and observed parts through the test
of hypotheses. More accurate estimation is obtained by using internal edges and
silhouettes.

4.1.4 New Representation Scheme

Delingette et al. [31, 47] proposed a new surface representation scheme called spherical
attribute image (SAI) for recognition of 3D objects. They pointed out the drawbacks
of the earlier spherical representation such as EGI and CEGI [58, 57], and developed
a new approach combining the point set matching and the original EGI approach.
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An initial mesh under the local regularity condition is defined to represent the input
object as closely as possible by deforming a standard shaped mesh under the guidance
of forces which make the constraints satisfied. Meshes are created on the unit sphere
which have the same number of nodes as the meshes on the object, and a canonical
map is defined between the two mesh representations. A new curvature measure, the
simplex angle is calculated and stored at every node of the mesh, which is invariant
in terms of rotation, translation and scaling. Matching and recognition is achieved
by comparing the spherical model of a reference object with that of the input object.
Shum et al. [107] dealt with the problem of similarity between two 3D surfaces and
proposed a shape similarity metric based on spherical attribute images. The similarity
measure is also used for multi-scale classification of 3D objects by Zhang and Hebert
[123] which can be applied to hierarchical recognition scheme.

Stein and Medioni [111] proposed a method for matching which uses two different
types of primitives: the 3D curves from boundary edges and differential properties
called the splash in smooth areas. The 3D curves are represented based on a polygonal
approximation, and curvature and torsion angles are estimated together with the
number of segments of the polygon characterize the 3D super segment. For smooth
areas, splashes are calculated. A reference normal is determined at a point on the
surface and points are sampled along a circular slice around the reference normal
with a pre-defined geodesic radius and surface normals are calculated at the sampled
points, which comprises a super splash with a set of geodesic radii. The splashes
are mapped to periodical polygonal curves based on spherical coordinates which are
encoded as 3D super segments. A hash table combined with indexing scheme is used
for efficient storage and access in the database which records all the features from
which hypotheses for matching are retrieved. A set of hypotheses are used for pose
and recognition and a least squares match on all corresponding features is used for
the precise pose estimation.

Several new representation schemes for 3D object recognition have been used in
matching. Not only the shape of an object but also additional information which
is invariant to various operations such as rotation, translation, etc. is incorporated
to represent the object for recognition purposes. A new representation scheme for
recognition of 3D free-form objects, called COSMOS, was proposed by Dorai and
Jain [34, 35, 36]. An object is represented by maximally sized surface patches each
of which has constant shape index characterizing local shapes of the object. The ar-
eas of the surface of each shape index value are represented as a histogram, called
shape spectrum which gives a distribution of shape components of the surface on the
object. Curvedness is used to capture the scale differences between objects which
shows the amount of curvatures in a region. Connectivity information is maintained
for the relative spatial arrangement of the surface patches along with the orientations
of them using the Gauss Patch Map and the Surface Connectivity List. A graph
based multi-level matching scheme based on shape spectral analysis and COSMOS
representation was studied by Dorai and Jain [35]. Campbell and Flynn [18] dis-
cussed the use of curvatures as a descriptive feature for recognition for polygonal
mesh approximation and range data. The location of curvature extrema for polygo-
nal representation is discussed. They also proposed a curvature/edge detector which
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uses a hysteresis-based approach and non-maxima suppression as an enhancement to
the hysteresis method and showed that the use of different methods and measures to
estimate surface curvature depend on the type of surface polygonization. Chua and
Jarvis [26] used additional one dimensional information as well as data points on the
surface. The information, called the point signature is calculated at a point, which
describes the local surface structure in the vicinity of the point. A point signature
at a point p is obtained by the distance profile of the intersection curve of the sphere
whose center is the point p with the object surface against a plane determined by
the intersection curve and translated to the point p. The matching procedure is eas-
ily done by comparing the one-dimensional point signatures. One the other hand,
Johnson and Hebert [53] proposed a new representation scheme based on spin im-
ages. An oriented point defined as a 3D vertex position with a surface normal on an
object defines a 2D basis i.e. a local coordinate system, around which a function that
maps 3D points to the 2D coordinates of the 2D basis is evaluated. The function
produces a 2D histogram of the surface, which is called the spin image. It contains
the relative position of 3D points on the surface so that it describes the shape of the
object. Comparing spin images is done with linear correlation coefficients from which
a point correspondence is established. Several point correspondences are then used
to estimate the transformation for matching and verification.

4.1.5 Matching Through Localization/Registration

Object recognition can be accomplished by selecting the candidate model in the
database which gives the minimum distance metric with the object in question. This
procedure needs to be preceded by object alignment i.e. registration. Registration of
images has previously been studied by various researchers [16]. Finding corresponding
features or points between two sets of objects is a critical step to estimate the trans-
formation for registration. A solution scheme for establishing correspondence depends
on the availability of initial correspondence information. If such correspondence is
known, then the calculation of the transformation is easily obtained [5, 48, 49, 119].
On the other hand, with an initial transformation or initial correspondence informa-
tion, an optimum transformation can be found through iteration by minimizing a
mean square distance metric object function which involves six degrees of freedom for
registration (three translations and three rotations). Besl and McKay [10] used the
Iterative Closest Point (ICP) algorithm for registration of 3D shapes. It updates the
correspondence between the objects based on the closest distance at each iteration
and iteratively converges to a local minimum. The ICP algorithm is generalized to
include Euclidean invariant features to provide a more effective algorithm by Sharp
et al. [105]. A similar idea was proposed by Zhang [124]. He dealt with outliers, oc-
clusion, appearance and disappearance using a statistical method based on distance
distribution. Tucker and Kurfess [116] used Newton’s method to solve an optimiza-
tion problem of registration. They derived analytical expressions for Jacobian and
Hessian which are used in Newton’s method to improve efficiency and accuracy of the
registration for parametric surfaces. Patrikalakis and Bardis [90] provided an efficient
method for accurate localization of free-form rational B-spline surfaces given an ini-
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tial estimate of the localization parameters. This iteration approach, however, cannot
guarantee to produce an optimum result in the global sense and it requires a good ini-
tial state to find a global minimum which is not easily obtained. When no prior clue
for correspondence or transformation is available, the localization problem becomes
more difficult. In this case, correspondence information between objects must be es-
tablished to estimate the transformation. A few attempts have been made to solve a
problem of this kind. Bergevin et al. [7] proposed a method to estimate the 3D rigid
transformation between two range views of a complex object. They used a hierarchi-
cal surface triangulation representation through an iterative process. Some pairs of
matching triangles in the overlap between two views are calculated. From the pairs a
set of hypothetical rigid transformations can be obtained. Additional restrictions are
imposed to reduce the number of initial estimations. They used the iterative least-
square computation of an incremental transformation proposed by Chen and Medioni
[24] to find an optimum transformation based on the estimated hypothetical trans-
formations. Chua and Jarvis [25] developed a method to align two objects through
registration assuming no prior knowledge of correspondence between two range data
sets. They use a bi-quadratic polynomial to fit data points in the local area in the
least squares sense and calculate the principal curvatures and Darboux frames. Then,
they construct a list of sensed data points based on the fit error. Three seed points
are selected to form the list such that the area of the triangle represented by the
seed points becomes maximized to reduce any mismatch error. Three constraints
(curvature, distance and direction) are imposed to sort out possible corresponding
points out of the model data set. Then a list of transformations can be obtained from
the candidate points and an optimum transformation is selected. Various searching
algorithms are described and demonstrated in [25].

4.1.6 Miscellaneous Approaches

Elber and Kim [39] formulated intrinsic conditions to recognize specific shapes. They
developed scalar fields based on symbolic computation for shape recognition such as
collinearity, circularity, etc. For practical purposes, point sampling at finite, well-
selected locations is suggested to determine the shape of a curve or a surface. Point
sampling is also the basis of Piegl and Tiller [94]’s approach for shape recognition.
They first detected special shapes such as circles, planes, spheres, etc and used them
to get offset curves or surfaces. Surazhsky and Elber [114] proposed a matching al-
gorithm by using the unit normal fields of the two surfaces. The similarity of the
normal fields is the criterion for matching, which is formulated as an optimization
problem. The algorithm, however, deals with simple surfaces that are topologically
equivalent to a disk and only local solutions are discussed. Chuang [27] proposed a
potential-based approach for 2D shape matching and recognition and Chuang et al.
[28] extended it to three dimensions using a generalized potential model. The match-
ing process involves the minimization of a scalar function, the potential which depends
on shape and interaction between two objects. One object is translated and rotated
so that the potential is minimized, which is considered as the best match. Novotni
and Klein [83] proposed a geometric comparison of 3D objects by using 3D discrete
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distance fields. They matched two objects by first aligning the principal moments and
constructed the distance histograms from the distance fields which measure geometric
similarity of the objects. Osada et al. [88] proposed the idea to reduce the shape
matching problem to the comparison of probability distributions which can be used
as a signature of an object. Different shape functions representing global geometric
properties are selected to produce the signatures of the objects and the similarity
between the distributions is investigated. An issue of approximate equality of two
B-rep models of solids is discussed in Sakkalis et al. [101]. Motivated by the robust-
ness in representation of solids, they provided sufficient conditions that an interval
solid represented using a finite collection of boxes is homeomorphic to the solid for a
sufficiently small resolution. An outline of construction of interval solid based on an
ISI algorithm is presented and it is shown that an interval solid constructed by the
algorithm based on interval arithmetic is an equivalent representation of the exact
solid. The theoretical results are applied to verification of geometric consistency and
rectification of B-rep solids. In addition, they provide mathematical properties which
are readily applicable to surface or B-rep solid matching problem.

Most of matching or recognition literature is dealing with objects in range data or
polygonal mesh representation. This may be justified because the input device such as
the laser scanner usually produces range data or a cloud of points, which also can be
converted to polygonal meshes or STL’s [1], so that matching or recognition of objects
in such formats becomes a main interest and is directed to use such representation
formats. However, the discretization loses some local surface information, which
brings up the difficulty in extracting surface intrinsic information useful for matching
or recognition purposes. Especially, the errors introduced in the course of digitization
due to the nature of input devices, may deteriorate the situation.

The moment based approach is simple and useful for object matching and recog-
nition, but unfortunately, its sensitivity to noise remains a major shortcoming of the
approach. Especially, when the moment invariants involve coefficients of higher or-
der, the sensitivity to noise is intensified so that its effect becomes dominant. The
invariant properties of the moment based approach are well preserved for noise free
objects. But they become unreliable when they are dealing with objects with noise.
Principal component analysis has a similar problem. If noise is not removed before
the analysis, then only the components of low frequency are used for matching so as
to minimize the effect of the noise, which may undermine the ability to discriminate
between objects with relatively small differences in shape.

Matching through localization may require segmentation as a preliminary step,
which is also difficult and prone to errors. Without such segmentation, the localiza-
tion approach fails to recognize an object when more than two objects are involved.
There are a few iterative registration methods which do not require segmentation
before matching. They, however, suffer from the weaknesses that the optimum trans-
formation is not guaranteed and the result heavily depends on the initial value of the
transformation.

Recognition from boundary curves or silhouettes is useful as long as the bound-
ary curves or silhouettes are robustly extracted. Also they may lack overall shape
information which can lead to false matching. Internal edges as well as silhouettes
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are used for more accurate recognition [23].
Some global representation methods for recognition such as SAI and EGI are

proposed. They only can be applied to objects which are topologically equivalent
to the sphere because a new mesh representation is generated from the unit sphere
through deformation that satisfies some constraint conditions [57, 58, 88].

Local descriptors such as the splash and super segments or point signatures are
used for matching and recognition purposes. They are able to capture the local surface
information. However, extraction of such local properties is sensitive to noise and the
quality of meshes of the local surface.

4.2 Problem Statement

4.2.1 Matching Objects

Two matching cases are considered in this chapter: the point vs. NURBS surface and
the NURBS surface vs. NURBS surface. The base object has to be a NURBS surface,
and the objects that are transformed to match the base surface can be represented in
range data or mathematical surfaces such as NURBS surfaces and implicit surfaces.
Since the surface vs. surface case can be regarded as a special case of the point vs.
surface case, the point vs. surface case is mainly considered in this chapter. When
solids are provided, their bounding surfaces are considered for matching and similarity
evaluation.

4.2.2 Distance Metric

The Euclidean distance between two points p1 and p2 is defined as

de(p1,p2) = |p1 − p2|. (4.1)

We also define the minimum distance between a surface r and a point p as follows:

dsp(r,p) = min{de(pi,p), ∀pi ∈ r}. (4.2)

4.2.3 Distance between a Point and a Parametric Surface

Let us assume that we have a point p in the 3D space and a parametric surface
r = r(u, v), 0 ≤ u, v ≤ 1. Then the squared distance function is defined as follows:

D(u, v) = |p − r(u, v)|2,
= (p − r(u, v)) · (p − r(u, v)). (4.3)

Finding the minimum distance between p and r is reduced to minimizing (4.3) within
the square 0 ≤ u, v ≤ 1. Therefore, the problem needs to be broken up into several
sub-problems which consider the behavior of the distance function at the boundary
and in the interior of the bound [91]. The sub-problems are summarized as follows:
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Find the minimum distances (1) in the interior domain, (2) along the boundary curves
and (3) from the corner points. Among those minimum distances, the smallest one
is chosen as the minimum distance between the point p and the surface r. A robust
calculation of the minima of the distance function (4.3) can be achieved by the Interval
Projected Polyhedron (IPP) algorithm [106, 91, 125].

4.2.4 Distance Metric Function

Suppose that we have a NURBS surface rB and an object rA represented in discrete
points or surfaces. Then, the matching problem can be stated as finding the rigid
body transformation (a translation vector t and a rotation matrix R) so that a global
distance metric function

Φ =
∑

∀p∈rA

dsp(rB, (σRp + t)) (4.4)

becomes minimal, where σ is a scaling factor.

4.3 Surface Fitting

Two cases are dealt with for matching in this paper: the point vs. surface and
the surface vs. surface matching cases. Since the proposed algorithms are based
on differential properties for matching, robust and accurate extraction of them is
important. When the surface vs. surface case is considered, the differential properties
can be accurately calculated. However, estimation of umbilical points or curvatures
from range data itself is a difficult problem. A surface fitting method such as a
least squares fitting method or a method in [108] is preferred here because high order
derivative properties can be calculated analytically from the fitted surface.

In this thesis, we use a NURBS surface fitting method in the least squares sense [93]
using the singular value decomposition method. When data points are arranged as a
grid, then the chord length parametrization method can be adopted for parametriza-
tion of the data points, and the control points of a NURBS surface are obtained using
the standard least squares method. If data points are unorganized, one can use the
base surface method for parametrization proposed by Ma and Kruth [69]. A Gaussian
(low pass) filter may be used to eliminate high frequency noise in the data points to
reduce the effects from the noise in the differential property calculation [87].

4.4 Matching Criteria

Three tests are proposed for evaluation of similarity. The ε-offset test, the principal
curvature test and the umbilic test are performed at the node points of the intrinsic
wireframe.
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4.4.1 ε-Offset Test

How close surface rB is to surface rA in terms of the Euclidean distance is the objective
of this test. The squared minimum distances between rA and rB are calculated and
checked if all of them are within an ε-distance bound or one of the surfaces is within
an ε-offset of the other. In [125], the squared distance function and its stationary
points between two variable points located on two different geometric entities are
investigated. Based on this technique, the distances between two surfaces rA and rB

are calculated.

4.4.2 Principal Curvature and Direction

The principal curvatures and their directions are used in this similarity test. The
differences of the principal curvatures and the directions between two surfaces at the
reference points obtained from the shape intrinsic wireframe, are calculated and used
for a similarity decision criterion.

4.4.3 Umbilic Test

Every closed orientable surface in R3 (of class C3) with genus different from one
(hence being topologically different from the torus) has at least one umbilic [14] and
various free form surfaces may contain umbilical points. However, the availability of
this test depends on the existence of isolated generic umbilics. This test is based on
the fact that generic isolated umbilics and the patterns of lines of curvature around
them are stable to perturbations so that their qualitative properties are preserved,
and determines whether their locations and patterns for surface rA match those for
surface rB.

4.4.4 Assessment of Matching

Let us denote k node points of the surface intrinsic wireframe from surface rB as Pi

(i = 1, 2, · · · , k). Here surface intrinsic sampling methods using geodesics or lines of
curvature are preferred because they are independent of parametrization. Next, find
the minimum distance foot-points Qi on surface rA of Pi. The IPP algorithm can
be used to find these minimum distance footpoints robustly as in [125]. After finding
the footpoints Qi on rA, we calculate the following quantities between Pi and Qi

(i = 1, 2, · · · , k).

• Euclidean distance of |Pi − Qi| : ε0i

• The second derivative properties

– Difference of principal curvatures : ε1i, ε
′
1i

– Difference of principal directions : ε2i
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Maximum values, average values and standard deviations can be calculated for each
ε0i, ε1i, ε′1i and ε2i to provide quantitative statistical measures to determine how similar
the two surfaces are in a global manner.

Local similarity can be assessed with εji at corresponding positions. Each εji

(j = 0, 1, 2) is normalized with respect to the maximum value of maxi(εji). Tolerances
δj (j = 0, 1, 2), corresponding to εji, are used to extract the regions of interest.
Namely, the regions in which εji > δj are those where the two surfaces are different.
As an extension of this idea, the similarity between two surfaces can be provided as a
percentage value. First, the difference values εji are located over the uv plane. Then
the uv plane is subdivided into a set of square grids of size (δs × δs) where δs is a
user defined value. The total number of the square meshes is denoted as DT . Given a
tolerance δj, the number of the squares Dε, which contain at least one point satisfying

εji > δj, is found. Then,
(

1 − Dε

DT

)

× 100 becomes a percentage value of similarity.

The squares which do not contain points satisfying the condition indicate the regions
where the two surfaces are equivalent under a given test with a tolerance δj.

4.5 Moment Method

Integral properties are used for global matching of solids. The integral properties for
solid A and B, i.e. centroids (centers of volume) and moments of inertia, are calculated
using Gauss’s theorem or the divergence theorem which reduces volume integrals to
surface integrals. The inertia tensor of solid A and B is constructed. It consists of a
3 × 3 square matrix whose diagonal terms Ixx, Iyy and Izz are called the moments of
inertia and the remaining terms (Ixy, Iyx, Ixz, Izx, Iyz and Izy) the products of inertia.
By the definition of products of inertia we have Ixy = Iyx, Ixz = Izx and Iyz = Izy,
and the tensor is symmetric. The principal moments of inertia and their directions
are obtained by solving an eigenvalue problem [99].

Once the centroids and the principal directions of both solids are calculated, solid
A and B are translated and rotated so that their centroids and principal axes of inertia
coincide. If necessary, solid B is uniformly scaled based on the relative volumes of the
two solids.

There are cases where ambiguity in matching arises when the principal moments
of inertia are used for matching. Since for each principal axis, two opposite directions
are possible and thus a total of eight matching cases can be obtained. A right-handed
coordinate frame assumption can reduce the eight matching cases to four [43]. Such
ambiguity in matching the directions of the principal moments of inertia can be
resolved by evaluating the sum of the squared distances calculated at the reference
points for comparison and choosing one direction which yields the minimum value.

4.6 Correspondence Search

The main purpose of this section is to find a correspondence between two objects
(points and a NURBS surface, or a NURBS surface and a NURBS surface) using
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surface intrinsic properties. Let us assume that we have two objects rA and rB. The
object rB is a base surface and the object rA is a target object which is positioned in
a different pose with no scaling effect and is to be transformed for alignment to the
base surface.

4.6.1 Algorithm using Umbilical Points

The availability of this method depends on the existence of umbilical points on an
object. In order to locate umbilical points from range data, any kind of surface fitting
method is used to get a NURBS surface, which is provided as input to the umbilical
point detection algorithm [74, 91]. Let us assume that we have an approximated
surface rA. When isolated generic umbilical points exist on both surfaces rA and
rB, we can use the ω-plane to establish correspondence of the umbilical points. Let
us assume that rA and rB have nA and nB umbilical points, respectively. Then we
calculate ω in equation (2.30) for each umbilical point, i.e. ωAj (j = 1, · · · , nA)
for the umbilics on rA and ωBk (k = 1, · · · , nB) for the umbilics on rB. Since the
number of isolated generic umbilical points on a surface is generally small, a brute
force search scheme can be employed without loss of performance.

The searching process is to find pairs of (ωAj, ωBk) of the same type which satisfy

|ωAj − ωBk| < δω, (4.5)

where δω is a user defined tolerance.

4.6.2 Algorithm using Curvatures

In this section, a new method is presented to find an optimal transformation, which
minimizes a global distance metric function between two objects, when no prior knowl-
edge on correspondence or transformation is provided [60]. Our work is motivated by
Chua and Jarvis [25], and is applied to the points vs. surface and surface vs. surface
cases. Our method uses intersection between iso-curvature lines of the Gaussian and
the mean curvatures to establish correspondence, which is computed robustly by a
subdivision algorithm, the Interval Projected Polyhedron (IPP) algorithm [106, 91].
This algorithm requires no initial estimate and avoids converging to a suboptimal
local minimum, as it is a robust global algorithm which exhaustively isolates all solu-
tions. Moreover, depending on the convergence tolerance used in the IPP algorithm,
an accurate result can be obtained.

The overall diagram of the KH method is shown in Figure 4-1. The input of the
process includes two objects and three pairs of the Gaussian and the mean curvatures
at three different non-collinear locations on a target object rA. The algorithm yields
the minimum value of Φ in equation (4.4), and the corresponding rotation matrix R
and the translation vector t. Since no scaling effect is involved, the scaling factor
σ = 1.

The first step is to select three non-collinear points m1, m2 and m3 on rA where
each point has different Gaussian K and mean curvature H values. More than three
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Figure 4-1: A diagram of the KH method

points can be used in this process as long as they are not collinear. But for per-
formance reasons, three non-collinear points are chosen in this step. They are the
minimum number of points from which the rigid body transformation can be obtained
as shown in Section 3.2. If surface rA is described in terms of discrete data points,
we have to estimate the curvatures at these points as accurately as possible. This
can be achieved by various methods such as the circle fitting method by Martin [77],
the CP method by Stokely and Wu [112], the CT method by Sander and Zucker
[104] and surface fitting methods described in Section 4.3. At mi, we assume we
have computed estimates for the Ki and Hi, where i = 1, 2, 3. Next, we subdivide
r2 into rational Bézier surface patches Bj (j = 1, · · · , n) by inserting appropriate
knots [50, 93]. Then, for each rational Bézier surface patch Bj, we express Kj and
Hj in the bivariate rational Bernstein polynomial basis form using equations (2.11)
in either rational arithmetic or rounded interval arithmetic, as described in [72], to
maintain accuracy in the calculation, see Appendix B for details. This allows us to
use the Interval Projected Polyhedron (IPP) algorithm [91, 106] for solving nonlinear
polynomial systems.

For each pair (Ki, Hi), we solve the following system of equations by the IPP
algorithm,

Kj(u, v) = Ki ± δK ,

Hj(u, v) = Hi ± δH , (j = 1, · · · , n and i = 1, 2, 3), (4.6)
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where δK and δH quantify the uncertainty in curvature estimation from discrete point
sets.

Estimation of curvature values from a set of discrete data points with noise is a
difficult problem, because the curvature is a second order differential property and
sensitive to perturbations of the data points. The curvature values estimated by
any method involve uncertainty, represented by δK and δH as in equations (4.6).
The values of δK and δH are set to be zero when accurate curvatures are available.
The accuracy of estimation depends on the accuracy of the digitization device, the
estimation methods, etc. Thus, δK and δH need to be determined on a case-by-case
basis.

During the formulation of equations (4.6) in the Bernstein basis, square root terms
are present because of the normalization of the normal vector. To find the solution
of system (4.6) with the IPP algorithm, we use the auxiliary variable method to
handle the square root terms in the formulation [91, 72]. In this manner a nonlinear
polynomial system of higher dimensionality is obtained, see Appendix B.

Two versions of equations (4.6) have been formulated: one is for integral and
the other for rational Bézier surface patches. The latter is a general expression so
that it can deal with the former as a special case. However, the formulation for
the rational Bézier representation contains higher degrees than the other. Hence,
depending on the input representation form, more appropriate formulation needs to
be used. Let us assume that a given surface has degrees m and n in the u and v
directions, respectively. The degrees of the equations which are provided to the IPP
algorithm are summarized in Table 4.2, where nd is an auxiliary variable used in the

Integral Bézier Rational Bézier
Equation nd u v nd u v

(B.7) 2 4m-2 4n-2 2 8m-2 8n-2
(B.8) 4 6m-4 6n-4 4 16m-4 16n-4
(B.9) 3 5m-3 5n-3 3 12m-3 12n-3

Table 4.2: Degrees for integral and rational Bézier representations

formulation, see Appendix B. Since interval arithmetic is used in the IPP algorithm,
any concern about the floating point error caused from high-degree polynomials can
be avoided [91, 106, 72]. Hence, no roots of equations (4.6) are missed due to floating
point error. The IPP algorithm has been used in a variety of multivariate nonlinear
polynomial systems with great success.

When interval curvature values for Ki and Hi are used in equations (4.6), the
intersection of the Gaussian and mean curvature lines forms regions, i.e. a series of
boxes on the uv domain. The center points of the boxes are chosen as the roots of
equations (4.6). Depending on the size of δK and δH , the size of intersection boxes
can be large. If the size of a box is larger than δb × δb, where δb is a user-defined
value, then they are subdivided into smaller ones and then the new center points are
taken as the candidate points.
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For each Ki and Hi, a list of roots Li = (uik, vik), (k = 1, · · · , di) is obtained,
from which one 3-tuple (n1,n2,n3)

n1 = r2(u1k, v1k), n2 = r2(u2k, v2k), n3 = r2(u3k, v3k), (4.7)

is selected to satisfy the following Euclidean distance constraints simultaneously,

||m1 − m2| − |n1 − n2|| < δ,

||m2 − m3| − |n2 − n3|| < δ,

||m3 − m1| − |n3 − n1|| < δ, (4.8)

where δ is a user-defined tolerance. After this step, correspondence between each
point mi on rA and ni on rB is established, from which a translation vector and a
rotation matrix can be obtained.
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Figure 4-2: (a) The Gaussian curvature (b) The mean curvature
(c) The pre-images of the Gaussian and mean curvatures on the uv domain.

Geometrically, solving the system of equations (4.6) is equivalent to finding the
intersection points on uv parameter space of rB between the constant Gaussian cur-
vature lines and the constant mean curvature lines. For each Bézier surface patch,
Kj and Hj may be visualized as an explicit surface over the same parameter do-
main. Figure 4-2 shows a schematic diagram of the method. One of equations in
(4.6), Kj(u, v) = Ki indicates the iso-curvature lines of Ki in Figure 4-2(a) and
Hj(u, v) = Hi the iso-curvature line of Hi on the surface Hj in Figure 4-2(b). Find-
ing the roots of system (4.6) is equivalent to locating the intersection points in the
parameter space, i.e. I1, I2, I3 and I4 as shown in Figure 4-2(c). It may happen that
the curves of Kj and Hj on the parameter space overlap so that an infinite number of
roots exist. In such a case, the IPP algorithm produces a finite number of boxes which
contain these roots and whose size depends on the tolerance used to terminate the
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IPP algorithm, and each box is used as a candidate for the subsequent step. When Ki

and Hi are provided with non-zero δK and δH , then I1, I2, I3 and I4 are obtained as
rectangular boxes, and the center points of each of these boxes are used as candidate
points for the next step.

A prune search algorithm using the constraints (4.8) is employed to find candidate
points from the list of roots Li. The first constraint is used for lists L1 and L2 to sort
out the candidate points (u1s1

, v1s1
) and (u2s2

, v2s2
). Then, the second constraint is

applied to (u2s2
, v2s2

) and L3 to yield (u3s3
, v3s3

). The last condition is used between
(u1s1

, v1s1
) and (u3s3

, v3s3
) to determine the 3-tuple of (u, v), i.e.

Fs = {(u1s1
, v1s1

), (u2s2
, v2s2

), (u3s3
, v3s3

)} ,

which satisfies all three constraints (4.8). Let us assume that Li has di points. Then
applying equation (4.8) involves searching a 3-tuple in Li that satisfies the constraints.
Therefore, the time complexity in the worst case is O(d1d2d3). If Fs has more than one
tuple as a member, we have to choose one that minimizes a distance metric function.

Unfortunately, the mean curvature value changes its sign when the directions
of parametrization are reversed. Therefore, two mean curvature values (positive and
negative) are possible for the mean curvature values in (4.6) so that the whole process
needs to be performed twice to cover all possible cases. Then, two sets of Fs are
generated from which a tuple has to be selected which minimizes a distance metric
function.

After two 3-tuples with the correspondence information have been found, a rota-
tion matrix and a translation vector can be calculated by standard techniques, e.g.
using a unit quaternion [48].

4.7 Algorithms with Uniform Scaling Effects

In this section, matching algorithms involving scaling are discussed. Two methods
are proposed. One is using umbilical points for matching and the other is formulating
a matching problem based on optimization.

The KH method described in Section 4.2 is designed to solve a matching prob-
lem when no scaling effect is included by establishing correspondence, and in this
section it is extended to resolve scaling effects in the matching problem. Here, only
uniform scaling is considered because non-uniform scaling may distort the geometry
of a surface so that its functionality may be destroyed.

In case of global matching, a scaling value may be recovered by calculating the
ratio of areas between two surfaces or volumes between two solids. However, for
partial matching, comparison of any type of quantitative measures does not make
sense. Only qualitative feature matching can be considered. The other possible
approach is to search for a good match out of many possible solutions. Both methods
are explained in the following subsections.
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4.7.1 Use of Umbilical Points

The correspondence search explained in Section 4.6.1 only deals with qualitative as-
pects. Since the ω-plane is not affected by scaling, only qualitative correspondence
can be established in the process. This implies that without a scaling factor applied,
the rigid body transformation cannot be obtained for aligning two surfaces. There-
fore, a scaling factor has to be estimated before any transformation is considered.

Method 1

Let us assume that we have two surfaces rA and rB, where rA is an approximated
surface of input data points. The overall procedure is shown in Figure 4-3.

In step 100, all generic umbilical points are located on both surfaces rA and rB

using the IPP algorithm [74, 91]. Non-generic umbilical points are not used in this
process. If a generic umbilical point does not exist, this procedure cannot be applied.

In step 102, the correspondence search described in Section 4.6.1 is performed. The
value ω in the complex plane is scale-independent so that qualitative correspondence
can be built from this step. Suppose that matched pairs are denoted as mk, (k =
1, · · · , nk), where nk is the number of matched pairs. Then, when at least one pair
is found, the next step 104 is performed. If no correspondence is established, then
the algorithm stops, implying that the umbilical point method cannot be used in this
case.

Step 104 resolves the scaling transformation. To calculate a scaling factor, the
normal curvatures are evaluated at the corresponding umbilical points on both sur-
faces rA and rB. Then the ratio between them is obtained as a scaling factor. Suppose
that a surface r is scaled with a scaling factor σ, denoted as rσ. Then the normal
curvature κ on r is scaled to be κ

σ
on rσ. Therefore using this relation, the scaling

factor can be recovered.
In step 106, after sorting out candidate points, the rigid body transformation is

estimated by using the unit quaternion method [48]. Since the number of matched
pairs is more than three, the problem is reduced to finding the rigid body trans-
formation with three known corresponding pairs which goes to step 112. Using the
methods in [48] a rotation matrix and a translation vector can be calculated. If the
transformation does not exist, then the algorithm goes to step 108 which deals with
the matching process using less than three matched pairs.

In step 108, the orientations of the normal vectors at the corresponding umbilical
points are aligned. First, translate the scaled surface rA by the difference between
the positions of the matched umbilical points. Then, align the normal vectors at
the umbilical points. The alignment of the normal vectors can be achieved by using
the unit quaternion method [48]. Let us assume that we have two normal vectors
nA and nB at the corresponding umbilical points for rA and rB, respectively. The
problem of matching the normal vectors can be stated as: rotate nA around the vector
Nn = nA×nB

‖nA×nB‖ by an angle θ formed by nA and nB. The angle θ can be calculated

by θ = arccos(nA,nB); see [48] for details of rotation in the quaternion frame.
In step 110, matching of lines of curvature emanating from an umbilical point is

68



performed. Depending on the type of the umbilical point, one (lemon) or three (star
and monstar) lines of curvature pass through the umbilical point as shown in Figure
2-1, and each direction can be determined by the structure of the cubic terms C(x, y)
as summarized in Section 2.1.4. The directions can be obtained by calculating angles
of the lines of curvature with respect to the local coordinate system at the umbilical
point [74, 91]. Using the angles, vectors which indicate the directions of the lines of
curvature at the umbilical point can be obtained. These vectors are calculated at the
matched umbilical points on rA and rB. Suppose that the number of the direction
vectors on rA is nvA and the number of the direction vectors on rB is nvB . Choose
one vector from rB and align all of the vectors on rA. This process produces nvA

matched cases among which one match is chosen that minimizes equation (4.4). This
alignment is achieved by rotation around the normal vector in the tangent plane at the
matched umbilical point. Therefore, the rotation method using the unit quaternion
can be used in this process [48].

Method 2

The rigid body transformation can also be obtained by using the KH method de-
scribed in Section 4.6.2 after the scaling transformation is resolved. The algorithm is
the same as in Figure 4-3 from step 100 through step 104. After the scaling transfor-
mation is resolved, the KH method can be used to find the rigid body transformation
between two objects.

4.7.2 Optimization

A matching problem with scaling effects can be solved with an optimization technique.
Since there is no quantitative measure that can be used to estimate a scaling value,
the solution scheme has to resort to an optimum search method which can narrow
down the best estimate from the possible set of candidate solutions.

The KH method can be treated as a function of the scaling factor which yields a
value of Φ in equation (4.4) when a scaling factor is given. Namely, steps 10, 12 and
14 in the diagram of Figure 4-1 are grouped as a function f such that

f = Φ(σ,R, t), (4.9)

where Φ is the expression given in equation (4.4), σ the scaling factor, R the rotation
matrix and t the translation vector. Since the rotation matrix and the translation
vector are obtained from the KH method, we can reduce equation (4.9) to a function
of one variable, that is f = Φ(σ). Therefore, when σ is given as input, then f produces
the best rigid body transformation (a translation vector and a rotation matrix) as
well as the value of the object function defined in equation (4.4). When the selection
process fails, the tolerance δselect is iteratively increased so that any triplet can be
obtained. When no triplet is found, then the function f is penalized to yield a very
large value.

Using the function f(σ), the problem can be formulated as a one dimensional
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optimization problem to find a scaling value which yields the minimum of f . A
popular one dimensional optimization scheme, the golden section search [98] can be
employed to solve it.

An initial bracket [a, b, c] of the scaling factor is provided which contains an op-
timum value, and satisfies f(a) > f(b) and f(c) > f(b). Suppose this bracket is
I0. The golden section search starts with I0 and continues while the size of an in-
terval containing the optimum value σ is larger than a user defined tolerance which
determines the size of the interval.

4.7.3 Complexity Analysis

In this section, the proposed algorithms are analyzed in terms of time complexity and
accuracy. The convergence of the optimization method is also discussed.

Surface Fitting

The least squares fitting method requires solving a system of linear equations. Sup-
pose that there are r input data points and the number of the control points of an
approximated NURBS surface patch is c. Then the solution algorithm of the singular
value decomposition takes O(rc2+c3) multiplications [12, 45]. In general, the singular
value decomposition method is slower than solving the normal equations. However,
it is more stable and reliable [98].

IPP Algorithm

The total asymptotic computation time per step is O(nlml+1) [106, 91], where n is the
number of the nonlinear equations that need to be solved, l the number of independent
variables, m the maximum degree of the variables. Since the total number of steps
depends on a user-defined tolerance, it is hard to predict how many steps will occur
in advance. But for analysis purposes, we can use a coefficient α to indicate the total
number of steps performed in the algorithm. Then, the asymptotic time complexity
becomes O(αnlml+1).

Calculation of Umbilical Points

Calculating isolated umbilical points from a Bézier surface patch depends on the
degree of the surface. The governing equations that have to be solved are equations
(2.25), and the IPP algorithm is employed for the solution to the system of the
nonlinear equations. Let us assume that the degrees of a Bézier surface are du and dv

in u and v directions. In this case, the maximum degrees of each governing equation
in u and v directions are proportional to the degrees of the input surface. The
number of governing equations is three and the number of independent variables is
two. Therefore, the time complexity for the calculation of umbilical point using the
IPP algorithm is reduced to O(m3) per step, where m = max(du, dv).

In general, a surface is represented in NURBS form. Therefore, in order to apply
the IPP algorithm to locate umbilical points, the surface needs to be subdivided into
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Bézier surface patches by the knot insertion algorithm [93, 91]. Suppose, a surface has
cu × cv control points. Then the total number of subdivided Bézier surface patches is
proportional to cucv. Therefore, it is concluded that given a NURBS surface of degree
du and dv in u and v directions with cu × cv control points, the total complexity is
O(cucvαm3) where m = max(du, dv) and α is the number of steps performed in the
IPP algorithm.

Umbilical Method

The time complexity of the matching process of the umbilical point method depends
on the number of isolated umbilical points on the surfaces. Suppose that n1 and n2 are
the number of umbilical points on the model and target surfaces r1 and r2. Then the
search of correspondence takes O(n1n2) time in the worst case. However, in general,
n1 and n2 are small integers. Therefore, the elapsed time is typically negligible.

Optimization Method

The elapsed time of the optimization method relies on the number of iterations in the
IPP algorithm and the tolerance of the golden section search. Therefore, it is rea-
sonable to consider the time complexity of one iteration of the optimization method.
The complexity of the KH method consists of two parts: the IPP algorithm and the
selection process. The IPP algorithm solves equations (4.6) using the auxiliary vari-
able method [91]. Therefore, the number of equations and the number of independent
variables is three. Suppose that the degrees of a NURBS surface are du and dv and
denote the total number of steps performed by the IPP algorithm by α which depends
on the tolerance provided by the user. Since the maximum degree of each equation is
proportional to the degree of the surface, the total complexity for the IPP algorithm
becomes O(αm4), where m = max(du, dv). The selection process takes O(d1d2d3)
where di is the number of points of Li in the KH method. Therefore, the overall time
complexity is O(αlm4 + d1d2d3) per iteration of the golden section search.

4.7.4 Accuracy Analysis

Umbilical Point Method

The accuracy of the umbilic method depends on that of the computation in locating
umbilical points. The IPP algorithm requires a tolerance δumb which limits the size
of intervals containing roots. Therefore, the tolerance δumb becomes the expected
maximum accuracy bound of the umbilic method.

The quantitative estimation of the normal curvature at an umbilical point is im-
portant to recover a scaling factor. Since, in general, the curvature value is hard to
be estimated from a set of data points, the umbilical matching method may not yield
a satisfactory result. However, the result can be used as an initial estimate for an
optimization method such as the ICP or the optimization method proposed in this
thesis.
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Optimization Method

The accuracy of this method depends on various tolerances that need to be provided
as input to the algorithm. First, the KH method requires two different tolerances
δIPP and δselect. The tolerance δIPP is provided as input to the IPP algorithm which
limits the size of intervals of roots. The tolerance δselect is used in the selection process
of the KH method. However, the tolerance δselect does not affect the accuracy of the
final result because it is used as a value to sort out 3-tuples from a set of candidate
points. Therefore, the tolerance δselect can be a quite large number compared to δIPP .
The additional tolerance δG, which is used by the golden section search, is the one
that affects the accuracy of the result, and it restricts the size of an interval which
contains an optimum scaling factor.

The tolerance δG needs to be carefully chosen [98]. The algorithm is designed to
stop when the size of a bracket becomes smaller than δG during the iteration. But how
small the tolerance can be is an important issue that needs to be clarified. As Press
et al. [98] indicate, the smallest tolerance that can be used for the golden section
search is

√
ε, where ε is the machine precision. A smaller tolerance than

√
ε results in

unnecessary subdivisions of the bracket so that the overall performance deteriorates.

4.7.5 Convergence of the Optimization Method

The function f = f(σ) is not necessarily smooth so that it may not be suitable
for optimization methods such as the parabolic interpolation in one dimension [98],
that can find an optimum value more efficiently when a function is smooth. Instead,
a slow but robust method, the golden section search in one dimension is employed
for this optimization problem. This optimization technique is designed to cope with
the worst possible case [98] and narrow down the interval which is guaranteed to
contain an optimum value. It is known that the golden section search converges
linearly to an interval of user-defined size which is guaranteed to contain an optimum
(local minimum) value. The strategy of the proof is to show that the interval in the
subsequent step which contains an optimum value decreases by a factor of γ (< 1).
An assumption is made that three points a, b and c in a bracket [a, b, c] satisfy the
following conditions.

f(a) > f(b), f(c) > f(b). (4.10)

In addition, suppose that w is 3−
√

5
2

. This is called the golden section1 which is used
in the subdivision of the interval. We have an initial bracket [a0, b0, c0] which contains
an optimum value and satisfies (4.10). At the n-th step, suppose that we have an
interval [an, bn, cn] and at an, bn and cn the conditions (4.10) are satisfied. Moreover,
we have bn−an

cn−an
= w. The interval ln is calculated as ln = |cn − an|. At the next step,

i.e. the (n + 1)-th step, a value xn is selected that satisfies the ratio xn−an

cn−an
= 1 − w

and then the function f(xn) is evaluated there. If f(xn) > f(bn), then the interval

1The number 3−
√

5

2
is a root of w

2−3w+1 = 0, which supposedly has aesthetic properties dating
back to the ancient Pythagoreans [98].
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[an, bn, xn] is chosen. If f(xn) < f(bn), then the other interval [bn, xn, cn] is taken.
These two conditions guarantee that the selected interval encloses the optimum value
all the time. First, let us assume that the interval [an, bn, xn] is selected. The size of
the interval is ln+1 = |xn − an| which is equivalent to (1 − w)ln. Since 1 − w < 1,
ln is decreased to ln+1 by a factor of 1 − w. Next, consider the interval [bn, xn, cn].
The size of the interval is ln+1 = |cn − bn| which is also equal to (1−w) |cn − an|, i.e.
(1 − w)ln. Therefore, in both cases, the size of the interval ln is reduced by a factor
of 1 − w < 1.

4.8 Performance Considerations

The performance of the KH method depends on the degree of equations (4.6). As
shown in Table 4.2, when a bicubic integral Bézier surface is used, the degrees of
equations (B.7), (B.8) and (B.9) are 10, 14 and 12 for both u and v, respectively.
For a bicubic rational Bézier surface case, the degrees are 22, 44 and 33 for u and
v, respectively. Therefore, solving equations (4.6) using the IPP algorithm takes
substantial time because the IPP algorithm has O(m4) complexity per step for a
bicubic Bézier surface patch, where m is the maximum degree of the variables in the
equations. For a rational surface patch, the degrees are exceptionally high so that
the computation time is much larger for practical applications.

The overall performance can be improved by using low-degree approximation of
the Gaussian and the mean curvature functions. The Gaussian and the mean curva-
ture functions are sampled over the parametric domain, and using the approximation
techniques such as the multilevel B-spline approximation by Lee et al. [64] or the low
degree approximation of high degree B-spline surfaces by Tuohy and Bardis [117],
those two point sets can be approximated or interpolated with bicubic B-spline sur-
faces. Such approximation can be carefully performed to represent the sampled points
as closely as possible and this process can be done off-line. Then, the low degree cur-
vature functions are used as input to the algorithm.

The surface shown in Figure 4-4 is used for test purposes. The surface is a bicubic
B-spline surface patch with 20×20 control points. For this comparison, the surface vs.
surface localization case is considered. In this example, for the Gaussian and the mean
curvature approximation, 10,000 points are sampled uniformly over the parametric
domain, and the Gaussian and the mean curvatures are calculated at each parametric
value. Then, the curvature functions are represented as a height function over the
parametric domain. They are approximated by using the hierarchical B-spline method
by Lee et al. [64], which produces two bicubic B-spline surfaces of 259 × 259 control
points for the Gaussian and the mean curvatures as shown in Figure 4-5, respectively.
The elapsed time for approximation is 7.1 seconds for each curvature. The curvature
surfaces are subdivided into cubic Bézier surfaces, which are provided as input to the
IPP algorithm. In this case, the algorithm needs to be executed tn times, where tn is
the total number of the subdivided Bézier patches. In this example, the number, tn is
67081 (259×259), a rather large number. However, since the maximum degree of the
input surface is three, the total elapsed time of the IPP algorithm per step decreases
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Figure 4-4: The surface used for the peformance test
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Figure 4-5: The approximated Gaussian and the mean curvature function graphs

drastically so that the time increase due to the increased number of executions of the
IPP algorithm is compensated by the use of low degree polynomials in the algorithm.

The quantitative comparison of the total elapsed execution time between the
method using approximation of the curvature functions and the IPP algorithm on
the high degree function based on the integral B-spline formulation is made in Table
4.3. A linux machine with 1.6 GHz CPU and 512 Mbytes memory is used for this
test. The approximation method is three times faster than the IPP algorithm with
small error difference. The difference between the two methods will be even more
pronounced for the rational B-spline.

The approximation can be made as accurate as possible using more control points.
If an adaptive approximation method is used, then the accurate approximation can
be achieved with less control points so that the total execution time can be reduced.
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Approximation IPP
Time (sec) 225 725

Relative Error 0.0008 0.0001

Table 4.3: Time comparison of two methods

4.9 Conclusions

We have addressed a global/partial matching problem of free-form objects with no
prior clue on correspondence or initial transformation, and extended it to include
scaling effects. We demonstrated that correspondence between surface features can
be optimally established using the constant Gaussian and mean curvature lines and
generic umbilical points, and a scaling factor can be estimated by using the normal
curvatures at the generic umbilical points or an optimization method. The proposed
methods can be applied to free-form object matching with scaling and do not require
initial estimates for optimal matching.

With rough tolerances, the KH method can be used to produce a good initial esti-
mate for iterative algorithms such as the ICP algorithm and its variants. When tight
tolerances and accurately estimated curvatures are used, the method yields accurate
transformations. The KH method works well for the case when no information on
correspondence or transformation exists. With no good initial estimate, the itera-
tive algorithms may end up being trapped in a local minimum so that a successful
matching cannot be obtained. The KH method overcomes this problem. Moreover,
through approximation of the Gaussian and mean curvature functions with low de-
gree B-spline functions, the overall performance can be improved to compete with
standard iterative algorithms such as the ICP by Besl and McKay [10].

In the optimization approach for partial matching with scaling effects, an initial
interval for the golden section search is required. But compared to the iterative
methods such as the ICP [10] which needs not only an initial scaling value but also a
good rigid body transformation to avoid converging to a local minimum, the proposed
method in this chapter is much simpler in the sense that only an approximate interval
of the scaling factor is necessary, since the algorithm is able to find a rigid body
transformation with no prior clue on correspondence or initial transformation.

The moment method, which is one of the global matching methods, is used only
for matching solids. Solid matching can be covered by the proposed methods such
as the KH method or the umbilical point method. However, for global matching of
solids, the moment method may be preferred for efficiency reasons.
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Chapter 5

Shape Intrinsic Fingerprints

5.1 Introduction

Several methods have been reported on digital watermarking for 3D polygonal mod-
els which are widely used for virtual reality and computer graphics. Fornaro and
Sanna [41] developed a public watermarking technique for authentication of CSG (or
boundary representation) models. An extractable watermark is built using a hash
function and a public key algorithm is used for encryption and decryption of the
watermark. Two places are considered for storing the watermark: solids and com-
ments. To store the watermark in the solid, a new watermark node is created and
linked to the original CSG tree. In the comments, the watermark information can be
added without changing the model. 3D polygonal models are popular in computer
graphics and multimedia. Ohbuchi et al. [85] proposed data embedding methods
for 3D polygonal models. Three attributes for data embedding are studied: geo-
metrical quantity, topology and non-geometrical quantity. Dimensionless quantity
pairs such as ratio between an edge and a height in a triangular mesh or tetrahe-
dral volume (defined by three vertices of each triangle and a common apex vertex)
ratios are used for data embedding. Topological modification is another way to em-
bed information. The adjacency (connectivity) of triangles in a triangle strip can
be used, or by stripping off a pattern out of a given mesh, desired information can
be embedded. For non-geometrical quantity, change of texture coordinates is used
for data embedding. Yeo and Yeung [120] proposed a fragile watermarking method,
which detects unauthorized alterations of 3D models. Watermarks that are sensitive
to slight modification are embedded, which allows easy detection, localization and vi-
sualization of the modification. Vertex coordinates are slightly altered for watermark
embedding such that for every vertex, the bit value from the key function should
match the watermark bit. Benedens [6] proposed a method to embed watermarks
by altering surface normal distribution, which is achieved by displacing vertices in
the mesh, inducing alteration adjacent face normals. Normals are grouped into dis-
tinct sets called bins which are the entities for embedding one bit of watermark data.
Each bin’s property is changed to embedding watermark information. Cox et al. [29]
proposed a spread spectrum watermarking for multimedia data such as audio and
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video. Discrete cosine transform is used for Fourier domain method and a water-
mark is embedded in the data’s perceptually significant frequency components. The
spread spectrum watermarking for 3D polygonal models was proposed by Kanai et
al. [56]. It is based on wavelet transformation and multiresolution representation of
the polygonal model. The watermark is embedded in the large wavelet coefficient
vectors at one or more resolution levels of detail. On the other hand, Yin et al. [121]
used Guskov’s multiresolution signal processing method for meshes and constructed
a Burt-Adelson pyramid for the mesh using the 3D non-uniform relaxation operator.
Through pyramid construction, the low frequency components are found, where the
watermark information is embedded. Praun et al. [97] extended the spread-spectrum
approach to work for the watermarking of arbitrary triangle meshes. A set of scalar
basis functions over the mesh vertices from multiresolution analysis is constructed
and used to insert the watermark by disturbing the original vertices based on the
scalar function and watermark information.

Despite the popularity of NURBS curves and surfaces, watermarking for NURBS
representations is relatively new to engineering CAD. Ohbuchi et al. [86] proposed a
new data embedding algorithm for NURBS curves and surfaces, which are reparame-
terized using rational linear functions whose coefficients are manipulated for encoding
data. The exact geometric shape is preserved.

Watermark for verification such as [41] or [120] is fragile to a malicious attack.
The existence of the watermark determines whether the model is original or not.
Its purpose is only for authentication so that the watermark may or may not be
visible or extractable by a third party. On the other hand, robust watermark has
a somewhat different purpose. It is designed to exist against any kind of malicious
attacks to erase it. The hope is that if the attacker wants to get rid of it, he/she
needs to degrade the object significantly enough so that the object contains different
functional quality. Various mesh watermarking methods have been proposed but most
of them suffer from vulnerability from some kind of attack. The change of topology
of mesh or use of geometrical or non-geometrical quantities by Ohbuchi et al. [85]
is not robust against remeshing, simplification and the addition of noise. Surface
normals are used to overcome the weaknesses by Benedens [6] but its application
is limited. Praun et al. [97] proposed a robust watermarking method against such
attacks by using the extended spread-spectrum method and multiresolution analysis.
Watermark for NURBS curves and surfaces was proposed by Ohbuchi et al. [86].
The watermark information, however, can be easily destroyed by reparametrization
or reapproximation of the surface.

Since it is difficult to insert any form of robust user-defined watermark in the
NURBS representation, the similarity checking method is adopted in this work. Ev-
ery surface or solid via the definition of its shape has its own shape identity in deter-
mining the geometry of the object through a Euclidean motion. This shape identity
might be called the shape intrinsic fingerprint, as it is not artificial but is related
merely to the definition of the object’s shape. One example of these shape intrinsic
features are umbilics. Therefore, the fundamental issue involved here is to compare
two objects (solids or NURBS surfaces) using the shape intrinsic fingerprints and
determine whether one object is a copy of the other.
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Since digital fingerprints are salient features of an object, extracting these fin-
gerprints does not disturb the object as opposed to watermarking which embeds
additional information resulting in some modification of the object. Digital finger-
prints have been widely used for 2D images and multimedia data. Recognition, digital
indexing and tracking of images or multimedia data [54, 37] are main applications
of the digital fingerprints. Some researchers refer to digital fingerprints as passive
watermarks. They can also be used as an alternative to digital watermarks. However,
digital fingerprints for 3D CAD models have not been discussed so far.

Before comparing two free-form objects, they first have to be aligned so that the
effects of the rigid body transformation (rotation and translation) and scaling are
minimized. This alignment problem is equivalent to localization or registration. The
proposed matching algorithms are used for localization/registration. For checking
whole solids the moment method is preferred due to efficiency. The proposed al-
gorithms in this chapter are employed to compare the whole or part of surfaces or
solids.

5.2 Algorithms

Two similarity decision algorithms are proposed in this section. The decision al-
gorithms consist of three tests as described in Section 4.4 and provide quantitative
results with which one can determine whether one object is a copy of another or
not. One assumption is made that the objects which the algorithms are applied to
are either NURBS surfaces or solids bounded by NURBS surfaces. For a solid, the
bounding NURBS surfaces of the solid are used for comparison.

Algorithm 1 uses the maximum deviation value at each test for a decision, while
Algorithm 2 employs statistical methods for a decision. Each algorithm produces hi-
erarchical results for similarity between two surfaces. In the subsequent sub-sections,
it is assumed that rA and rB are matched, wireframed, and all umbilical points are
detected.

5.2.1 Algorithm 1

Two surfaces are provided as input to the first test or a weak test (ε-offset test) as
shown in Figure 5-1. Then a decision is made that surfaces rA and rB are within
or out of tolerance εd based on the Euclidean distance. If the maximum distance
between corresponding points on surfaces rA and rB is within εd, then surface rB is
considered to have passed the weak test and determined to be a copy of rA under the
weak test. On the other hand, if the distance is greater than tolerance εd, the test
fails. In such case, there are two possible courses of action. If εd is not large with
respect to the size of surfaces, the user may decide to increase it and retry the weak
test. If εd is large, then the user may decide to stop the process and decide that rB

is not derived from rA.
If the weak test is passed, then an intermediate test (principal curvature and

direction test) may be performed. The procedure is similar to that of the weak test.
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If the test succeeds, rB is considered to be a copy of rA under the intermediate test.
If it fails, the user may decide to stop the process and conclude that rB is derived
from rA with respect only to the weak test or try the test again with a new εa.

If no isolated generic umbilical point exists, the process stops and it is concluded
that rB is derived from rA under the intermediate test. If an umbilic exists, the strong
test (umbilic test) may be performed. If the test succeeds, it is concluded that rB is
derived from rA under the strong test. Otherwise, it is decided that rB is a copy of
rA under the intermediate test.

5.2.2 Algorithm 2

The overall procedure is the same as Algorithm 1 except that no iteration is involved;
see Figure 5-2. In this algorithm, a decision is made based on statistical information
obtained from each test. From the weak test, statistics of the distance function are
computed and evaluated by the user or a computer program. If the statistics pass a
set of threshold tests, then it is concluded that rB is derived from rA under the weak
test, and then the intermediate test begins. Otherwise, it is concluded that rB is not
derived from rA.

The intermediate test constructs statistical information of intrinsic properties,
such as angle differences of the principal directions. A determination is made as to
whether the statistics pass a set of threshold tests. If the threshold tests are negative,
it is concluded that rB is derived from A under the weak test. Otherwise, it is
concluded that rB is derived from rA under the intermediate test.

Similarly, depending on the existence of umbilical points, the strong test may be
performed. Statistics of position differences of the locations between corresponding
isolated generic umbilics are considered in this test. A decision is made as to whether
the statistics pass a set of threshold tests. If the tests are negative, rB is concluded
to be derived from rA under the intermediate test. Otherwise, it is decided that rB

is derived from rA under the strong test.

5.3 Conclusions

In this chapter, two decision algorithms are proposed which provide systematic and
statistical measures for a user to check two surfaces for similarity using the three
tests discussed in Section 4.4. They can be applied to copyright protection of NURBS
surfaces or solids bounded by NURBS surfaces. Algorithm 1 uses the maximum value
at each test for a decision. Therefore, Algorithm 1 cannot supply partial similarity
information between two objects. On the other hand, since Algorithm 2 is based on
statistical methods for a decision, we can investigate which part is similar under a
user-specified tolerance. Such partial similarity information can be used to determine
whether part of an object has been stolen or not.
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Figure 5-1: Algorithm 1 for similarity decision
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Figure 5-2: Algorithm 2 for similarity decision
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Chapter 6

Examples and Applications

6.1 Object Matching

The proposed methods are tested with several numerical examples. Equations (2.25)
and (4.6) are solved by using the IPP algorithm in interval arithmetic for robustness,
and the rest of the calculation is done in double precision. A linux machine with 1.6
GHz CPU and 512 Mbytes was used for the calculations.

6.1.1 Moment Method

Solids bounded by bicubic integral B-spline surfaces, A and B are used. Solid A is
enclosed in a rectangular box of 25.0mm × 23.48mm × 11.0mm. Here, the height of
solid A is 25.0mm. Figure 6-1 shows a sequence of operations for matching of the two

Items Solid A Solid B
Volume (mm3) 83.794 18.007

Center of Volume (mm) (2.689 × 10−5, 7.016 × 16−5, 16.907) (12.628,−8.354, 17.216)
Principal Moments 1951.228, (0.0, 0.0, 1.0) 150.437, (0.259,−0.330, 0.908)
of Inertia (mm5) 4867.277, (1.0, 0.0, 0.0) 373.973, (0.951,−0.076,−0.299)

and direction cosines (x,y,z) 6046.463, (0.0, 1.0, 0.0) 464.746, (0.168, 0.941, 0.295)

Table 6.1: Integral properties of solids A and B

solids using the principal moments of inertia of input solids. In this example, for better
visualization, only part of the boundary surfaces of the solids is displayed. The smaller
solid is reparameterized, translated, rotated and uniformly scaled. In Figure 6-1-(A),
two boundary surfaces of the input solids are shown with their control points. Those
two bounding surfaces have similar shape but different number of control points and
parametrization. Matching the centroids of the two solids is performed by translating
the small solid by the position difference between the centroids, which is demonstrated
in Figure 6-1-(B). The orientation of the largest principal moment of inertia of the
solid A is aligned to that of the largest one of the solid B. Similarly, the remaining
two orientations are aligned based on the values of the principal moments of inertia.
After matching the orientations of the principal moments of inertia, the two solids are
aligned in their orientations as shown in Figure 6-1-(C). Figure 6-1-(D) shows that
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(B)

(D)(C)

(A)

Figure 6-1: Matching via integral properties

the two solids match after a uniform scaling factor, 4.651, is applied to the small solid.
The scaling factor is obtained from the ratio between the volumes of the two solids.
The centroids, volumes, principal moments and their directions are summarized in
Table 6.1.

6.1.2 Matching using Umbilics with Scaling Effects

In this section, matching through umbilical points is demonstrated with an example.
Suppose we have a set of data points rA and a surface rB. The surface rB shown in
Figure 6-2 is a bicubic B-spline surface with 64 (8 × 8) control points enclosed in a
box of 25mm × 23.48mm × 11mm. It has three star type umbilical points as shown
in Figure 6-2, and the parametric values of the umbilical points in interval arithmetic
from the IPP algorithm are summarized in Table 6.2. The elapsed time to calculate
the umbilical points is 81 seconds. The center values of the interval roots representing
umbilical points are given in Table 6.2 and the corresponding ω values in Table 6.3.
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Figure 6-2: Surface rB and its umbilics

Calculated umbilics for Surface rB using the IPP algorithm
No. (u,v)
1 ([0.748157559043998, 0.748157794338109], [0.0280931620263166, 0.0280933620263166])
2 ([0.860717315099411, 0.860717550393523], [0.4999999, 0.5000001])
3 ([0.748157559043993, 0.748157794338105], [0.971906637973675, 0.971906837973676])

Table 6.2: Umbilical points in interval arithmetic

The point set rA shown in Figure 6-3 is approximated with a bicubic B-spline surface
patch of 256 (16× 16) control points. It takes 20 seconds to obtain the approximated
surface. It has one umbilical point of star type as shown in Figure 6-3. The root is
([0.207059775021701, 0.207059851944778], [0.684685549876914, 0.684685626799991])
in interval arithmetic and the elapsed time is 524 seconds. The center value of the
interval and ω values are given in Table 6.4.

Each ω value is plotted in the complex plane as shown in Figure 6-4. We can find
out that the umbilical point of rB matches the number 2 umbilical point of rA by
comparing their complex ω values. Since correspondence has been found, a scaling
factor can be estimated by using the normal curvatures at the corresponding umbilical
points on both surfaces. The normal curvatures at the corresponding umbilical points
of rA and rB are κA = 0.334 × 10−2 and κB = 0.113 × 10−2, respectively. So the
scaling factor σ can be calculated as s = κA

κB

= 2.941. This scaling factor is applied
to rA and the surface is translated by the difference of the positions between the
two corresponding umbilical points to get r′A. The next step is to align the normal
vectors n1 for r′A and n2 for rB. The alignment can be done by rotating r′A by the
angle between nA and nB around a vector Nn = nA×nB

‖nA×nB‖ . The angle is 0.239 (rad)

Surface rB

No. (u,v) ω = (x + iy)
1 (0.748, 0.028) 0.094 − 0.069i
2 (0.861, 0.5) 0.151 − 0.261i
3 (0.748, 0.972) 0.094 + 0.069i

Table 6.3: Umbilics and ω values for rB
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Figure 6-3: Approximated surface rA and its umbilic

Surface rA

No. (u,v) ω = (x + iy)
1 (0.207, 0.685) 0.151 − 0.261i

Table 6.4: An umbilic and ω value for rA

for this example. In order to match lines of curvature passing umbilical points, one
direction of the lines of curvature from the surface rB is selected. Let us denote the
selected direction vector as vB

vB = (−0.821,−0.021,−0.570). (6.1)

Then three rotation angles between vB and the directions in Table 6.5 at the umbilical

points on r′A are calculated as in Table 6.6. Here, the angles are measured from
∂r

′

A

∂u
at

the umbilical point. Matching the directions of lines of curvature is done by rotating
r′A around the normal vector in the tangent plane at the umbilical point. The rotation
of r′A by the first angle 1.105 rad yields the best match as shown in Figure 6-5. The
relative measure of the maximum error can be calculated by dividing the maximum
distance error by a square root of the surface area of the surface, which is 0.011.

Figure 6-4: Umbilical points on the ω-plane
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No. angle (rad) direction
1 0.964 (0.141, -0.001, -0.990)
2 -0.964 (0.879, 0.017, 0.477)
3 1.669 × 10−15 (0.893, 0.014, -0.450)

Table 6.5: Angles and directions of lines of curvatures

1 2 3
angle (rad) 1.105 3.033 2.069

Table 6.6: Rotation angles for matching lines of curvature

6.1.3 Matching using Curvatures

Surface vs. Surface

In these examples, exact curvatures can be calculated so that Ki and Hi are provided
with δK = δH = 0. Figure 6-6 shows an example of global matching. Two bicubic
B-spline surfaces (enclosed in a box of 25.0mm× 23.48mm× 11.0mm) are given, one
of which is transformed through rotation and translation of the other. The surfaces
have knot vectors

u = {0, 0, 0, 0, 0.235, 0.471, 0.706, 0.941, 1, 1, 1, 1},
v = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}, (6.2)

and 64 (8 × 8) control points. Three seed points are chosen on surface rA in Figure
6-6. At those points, we get the result of Table 6.7 in double precision. Here, the
center values of the interval roots are shown. In Table 6.7, (u, v) are the parametric

Index (u,v) (x,y,z) (mm) K (mm−2) H (mm−1)
n1 (0.20,0.45) (-44.26,17.75,-15.10) −9.46 × 10−3 −1.80 × 10−1

n2 (0.58,0.68) (-52.32,13.36,-17.36) −1.94 × 10−3 −4.30 × 10−2

n3 (0.91,0.14) (-50.37,10.78,-31.83) 1.04 × 10−3 −6.14 × 10−2

Table 6.7: Gaussian and mean curvature values for example 1

values, (x, y, z) the Cartesian coordinates of the three points on rA, K the Gaussian
curvature, and H the mean curvature. A surface rB is subdivided into 25 Bézier
surface patches, each of which is labeled by rBi (i = 1, · · · , 25). Four, ten and six
candidate points are obtained for the point n1, n2 and n3. A value of 10−4 is used as
the tolerance to the IPP algorithm [106, 91].

The next step is to sort out 3-tuples which have the same Euclidean distance
constraints (4.8). After the correspondence between two 3-tuples on rA and rB is
established using the equations (4.8), the rotation matrix and the translation vector
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Figure 6-5: Localized points on the surface

are obtained as follows:

R =





0.62132 0.09854 −0.77734
−0.33704 0.92921 −0.15159
0.70737 0.35618 0.61054



 ,

tT = [14.54754 − 29.14947 43.98560]T . (6.3)

Applying R and tT to rA results in Figure 6-6(C), which shows a well localized
surface. The relative measure of the maximum error can be calculated by dividing
the maximum distance error by a square root of the surface area, which is 0.00533.

In Figure 6-7, a problem of partial matching is demonstrated. Two surface patches
in B-spline form are extracted from surface C and transformed through rotation and
translation, respectively. We can match both patches A and B onto the surface C as
shown in Figure 6-7 through the proposed method. In Figure 6-7, the dark areas are
the patches A and B after matching.

Two additional partial matching examples using the KH method are presented in
Figures 6-8 and 6-9. Figure 6-8 is half of a car hood and Figure 6-9 is a traditional
Japanese mask. Both are represented as bicubic B-splines. The hood has 64 (8 × 8)
control points (enclosed in a rectangular box of 13mm×12mm×6mm) and the mask
is constructed from 2 1

2
D sensed data through the hierarchical approximation method

by Lee et al. [64] with 1024 (32× 32) control points (enclosed in a rectangular box of
158mm× 204mm× 36mm). The estimated rotation matrices and translation vectors
as well as the relative maximum errors, i.e. the maximum distance divided by the
square root of the surface area, are given in Tables 6.8 and 6.9.

Point vs. Surface without Scaling Effects

Half of a fictitious car hood which is enclosed in a box of 10mm×12mm×6mm shown
in Figure 6-10 is used for demonstration of the proposed method to solve a partial
matching problem for the point vs. surface case. A set of data points is placed as
shown in Figure 6-10. To imitate the behavior of a 3D scanner, the data points p are
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(A)

(B)
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Figure 6-6: An example for global matching

sampled and perturbed randomly by the following equation with ξ = 0.01 [74, 91]:

p′ = p + ξ
(ex, ey, ez)

T

√
e2

x + e2
y + e2

z

, (6.4)

where ex, ey and ez are randomly chosen numbers which vary from -1 to 1 and ξ
is a constant that determines the amount of perturbations in the control points.
Three points are selected, and three pairs of the Gaussian and the mean curvatures
are estimated from the data points. Various curvature estimation methods can be
adopted here. In this example, a bicubic B-spline surface with 16×16 control points is
fitted over the points and then the curvatures are calculated. Values of 0.004 and 0.04

Hood Patch B (rB)

R





0.49457 −0.68014 −0.54113
−0.28685 0.45999 −0.84032
0.82044 0.57081 0.03240





tT [1.28624 − 2.04411 − 0.27958]
Relative Max. Error 0.00484

Table 6.8: Rotation matrix and translation vector for the hood
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(B)(A)

(C)

Figure 6-7: Examples for partial matching

Mask Patch A (rA)

R





0.32140 −0.14531 0.93573
−0.11698 0.97449 0.19151
−0.93969 −0.17101 0.29620





tT [−6.73206 − 9.95848 7.44983]
Relative Max. Error 0.00001

Table 6.9: Rotation matrix and translation vector for the mask

are used for the tolerances, δK and δH , and a value of 0.01 is provided as a tolerance
for the IPP algorithm. The tolerances δK and δH are selected by investigating errors
between true values and estimated ones over the surface under the given perturbation.
The numbers of candidate points are 2050, 1722 and 2870, for each selected point,
respectively, and one triplet which yields a minimum value of the objective function is
selected. The localized data points are shown in Figure 6-11. The relative maximum
error, i.e. the maximum distance divided by the square root of the surface area is
0.0174.

This example is also tested via the ICP algorithm by Besl and McKay [10] for
comparison purposes. The current position in Figure 6-10 is used as a starting state.
The ICP algorithm converges to a local minimum which is shown in Figure 6-12.
Obviously, the figure shows that the ICP algorithm fails in this situation, which
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(A) (B)

Figure 6-8: A localization example of a hood

means that the success of the ICP algorithm heavily depends on the starting position
or initial transformation. No such problems are encountered in the proposed method,
which does not require good initial estimates.

Point vs. Surface with Scaling Effects

A few examples are presented for demonstration of the optimization method for global
and partial matching. The first example is a partial matching problem as shown in
Figure 6-13. Data points in Figure 6-13-(B) have been scaled and transformed. A
bicubic B-spline surface with 324 (18 × 18) control points is used to approximate
the data points to calculate the Gaussian and the mean curvatures at three seed
points. The fitting step takes 99 seconds. The bottle surface shown in Figure 6-
13-(A) is a bicubic B-spline surface with 64 (8 × 8) control points, enclosed in a
box of 25mm × 23.48mm × 11mm. The problem here is finding a scaling factor
and the rigid body transformation which make the two objects match as closely as
possible. In this example, δIPP = 0.5 was used for the IPP algorithm tolerance
and δG = 0.001 for the golden section search tolerance. For an initial interval for
the golden section search, [0.3, 1.0] was used. The Gaussian and the mean curvature
functions are approximated by a bicubic B-spline surface with 256×256 control points
and provided as input to the algorithm. The tolerances δK and δH of 0.0001 and 0.001
are used, respectively. After the optimization stops, the estimated scaling factor is
0.364, and the rotation matrix and the translation vector are summarized in Table
6.10. The matched surfaces are shown in Figure 6-13-(A) and the darker portion is

Rotation Matrix Translation Vector




0.039 0.921 0.386
−0.169 0.388 −0.906
−0.985 −0.030 0.171



 [−32.090 − 53.595 − 12.391]

Table 6.10: Estimated rigid body transformation for the first example

surface B scaled and transformed. The relative measure of the maximum error can
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(B)(A)

Figure 6-9: A matching example of a mask

be calculated by dividing the maximum distance error by a square root of the surface
area of the bottle, which is 0.0068.

The second example is a global matching problem. An artificial surface shown in
Figure 6-14 is created and used for demonstration of the proposed algorithm. The
surface shown in Figure 6-14-(A) is a bicubic B-spline surface with 400 (20 × 20)
control points enclosed in a box of 10mm × 10mm × 2.5mm. The Gaussian and the
mean curvature values are estimated at three selected seed points. An interval of
[0.3, 1.0] is used for an initial bracket for the optimization routine, and a value of
0.001 is used for the tolerance of the golden section search. The recovered scale value
is 0.652, and the relative maximum error is 0.002. The localized result is presented
in Figure 6-14-(A).

The third example is a partial matching problem using half of a fictitious automo-
bile hood surface enclosed in a box of 13mm×12mm×6mm. To imitate the behavior
of a 3D scanner, the points P in Figure 6-15-(B) are disturbed by the equation (6.4)
with ξ = 0.01 [91, 74]. An interval of [0.3, 1.0] is used for an initial bracket for the
optimization routine, and a value of 0.01 is used for the tolerance of the golden sec-
tion search. The recovered scaling factor is 0.708, and the relative maximum error is
0.0005. The localized result is presented in Figure 6-15-(A).

The elapsed time of the optimization method (excluding the surface fitting step)
depends on the tolerances of the golden section search and the IPP algorithm. The
elapsed times for the examples under the given tolerances in this subsection are sum-
marized in Table 6.11.
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Figure 6-10: Initial position of the data points

Examples Times (sec)
Bottle Surface (Figure 6-13) 3449
Test Surface (Figure 6-14) 1567

Automobile Hood (Figure 6-15) 907

Table 6.11: Elapsed times for the examples

6.2 Copyright Protection

In this section, the two similarity decision algorithms proposed in Chapter 5 are
demonstrated with the bottle example in Section 6.1.1. After aligning the two solids
A and B shown in Figure 6-1, we are ready to assess the similarity between them.
Here, part of the bounding surfaces are used for similarity checking. The surfaces
are represented as bicubic B-splines and one surface has 64 (8 × 8) and the other
144 (12 × 12) control points. Both surfaces are enclosed in a rectangular box of
25.0mm × 23.48mm × 11.0mm. The 429 node points are used from the wireframe
given in Figure 3-10. The statistical quantities are calculated and summarized in
Table 6.12, and all umbilical points on the two surfaces are located as shown in
Figure 6-16.

Criteria Max Average Standard Deviation
ε-offset (mm) 0.03456 0.00814 0.00665

Maximum principal curvature (mm−1) 0.07872 0.01572 0.01530
Minimum principal curvature (mm−1) 0.10577 0.01411 0.02165

Principal direction (rad) 0.70052 0.05657 0.11385

Table 6.12: Statistical quantities for matching tests
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Figure 6-11: The localized data points

Figure 6-12: An example showing that the ICP algorithm may fail.

The Euclidean distances of the corresponding umbilical points are summarized in
Table 6.13. In order to use Algorithm 1, we need to provide tolerances for ε0, ε1,
ε′1 and ε2. Depending on each tolerance, we can determine which test has passed or
failed.

Statistical information given in Table 6.12 is obtained for Algorithm 2. Unlike
Algorithm 1 which uses the maximum value for each criterion, Algorithm 2 considers
not only maximum values but also averages and standard deviations. Moreover, at
each test, under a given tolerance, we can examine local similarity over the surface
so that we can quantify the similarity between two surfaces and we can see which
part is different. Suppose that we have 0.01 as a tolerance for the weak test. We
subdivide the uv region into 400 square sub-regions (each box size of 0.05 × 0.05).
The total number of sub-regions which contain footpoints Pi satisfying εi > 0.01 is 31.
Therefore, we can conclude that two surfaces are similar by 92.25% under the weak
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(A) (B)

Figure 6-13: An example for partial surface matching with scaling effects using the
optimization method

1 2 3
Distances (mm) 0.08099 0.02954 0.08115

Table 6.13: Euclidean distances between the corresponding umbilics

test with a tolerance 0.01 and sub-region of size 0.05 × 0.05. This can be visualized
as in Figure 6-17-(A). Here, the boxes indicate the regions which have more than one
point with deviation larger than the tolerance 0.01. The intermediate test using the
maximum principal curvature is visualized in Figure 6-17-(B). Under the intermediate
test for the maximum principal curvature with a tolerance 0.03, the similarity between
two surfaces is calculated to be at 91.25%. The results for the intermediate tests of
the minimum principal curvature and the principal direction are shown in Figure 6-
18-(A) and 6-18-(B). The similarity values for each case are 96.0% with a tolerance
0.03 and 95.50% with a tolerance 0.06.

The strong test can also be performed based on the umbilical points for both
surfaces as shown in Figure 6-16. Three star type umbilical points are identified
for each surface, and the Euclidean distances between the corresponding umbilical
points are calculated as in Table 6.13. The types of the corresponding umbilical
points match, and the position differences are small compared to the size of the
object. Therefore, we may conclude that solid B is derived from solid A under the
strong test.

The next example shows a case that one surface has been deformed so significantly
that the strong test fails. Two surfaces in Figure 6-19-(A) and (B) are represented
as a bicubic B-spline surface patch with 64 (8 × 8) control points, and enclosed in
a rectangular box of 25mm × 23.48mm × 11mm, respectively. The control points of
surface A as shown in Figure 6-19-(A) has been changed such that the difference of
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(A) (B)

Figure 6-14: A test surface and target points

the bottom shape of surfaces A and B is noticeable as shown in Figure 6-19-(C). The
surfaces are matched using the KH method with three seed points selected around
the neck of surface A. From the wireframe of surface A as shown in Figure 6-20, the
366 node points are obtained for similarity tests. The statistics information for the
similarity tests are calculated and summarized in Table 6.14.

Criteria Max Average Standard Deviation
ε-offset (mm) 2.13435 0.26950 0.47164

Maximum principal curvature (mm−1) 0.19392 0.00222 0.03114
Minimum principal curvature (mm−1) 0.10979 0.01265 0.02135

Principal direction (rad) 1.54548 0.15166 0.27892

Table 6.14: Statistics for the matching tests

To assess local similarity, the uv region is subdivided into 400 square boxes. Under
the user-specified tolerances for each test, the quantitative similarity measures are
calculated as in Table 6.15. Figures corresponding to each test are shown in Figure
6-21. The boxes indicate the regions where the condition for each test is not satisfied

Test Tolerance Similarity (%) Figure
ε-offset (mm) 0.48 86.50 6-21-(A)

Maximum principal curvature (mm−1) 0.04 88.50 6-21-(B)
Minimum principal curvature (mm−1) 0.02 89.00 6-21-(C)

Principal direction (rad) 0.30 92.50 6-21-(D)

Table 6.15: Quantitative similarity values

All umbilical points have been calculated using the IPP algorithm as shown in
Figure 6-22, which are provided as input to the strong test. Surface B has three
star type umbilical points, whereas surface A has two umbilics of star type. Because
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this is a global matching case and the number of umbilical points is different, it is
concluded that the strong test fails.

The matching cases, Figure 6-7-(B), Figure 6-5, Figure 6-8 are used for partial
surface similarity assessment. Let us call Figure 6-7-(B) case M1, Figure 6-5 case
M2 and Figure 6-8 case M3. The wireframes of cases M1, M2 and M3 are shown
in Figure 6-26. The statistics information and quantitative similarity values for case
of the three cases are summarized in Table 6.16 and Table 6.19, respectively. No

Case M1
Criteria Max Average Standard Deviation

ε-offset (mm) 0.00218 0.00071 0.00039
Maximum principal curvature (mm−1) 0.00096 0.00007 0.00013
Minimum principal curvature (mm−1) 0.00029 0.00003 0.00004

Principal direction (rad) 0.00055 0.00025 0.00012

Case M2
Criteria Max Average Standard Deviation

ε-offset (mm) 0.23407 0.10283 0.07036
Maximum principal curvature (mm−1) 0.01378 0.00300 0.00264
Minimum principal curvature (mm−1) 0.00939 0.00166 0.00181

Principal direction (rad) 0.09192 0.02701 0.01886

Case M3
Criteria Max Average Standard Deviation

ε-offset (mm) 0.01018 0.00472 0.00285
Maximum principal curvature (mm−1) 0.00938 0.00153 0.00147
Minimum principal curvature (mm−1) 0.00295 0.00085 0.00069

Principal direction (rad) 0.28397 0.00717 0.02630

Table 6.16: Statistics for the matching tests for case M1, M2 and M3

umbilical point exist for case M1. Therefore, the strong test cannot be applied to
case M1. Umbilical points and lines of curvature passing through them are shown
in Figure 6-27. The types and distances of the corresponding umbilical points for
each case are summarized in Table 6.17 and Table 6.18. These cases are dealing with
partial matching. Therefore, the comparsion region is limited to the region of the
smaller surface. For case M2, the model surface has three star type isolated generic
umbilical points and the transformed part has one star type isolated generic umbilical
point. For case M3, the entire hood surface has 12 isolated generic umbilical points
(7 star and 5 lemon umbilics) and there are 6 isolated generic umbilics (4 star and 2
lemon umbilics) on the transformed surface.

No Type Distance
1 star 0.15237

Table 6.17: The strong test for case M2
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No Type Distance
1 star 0.01494
2 lemon 0.01491
3 star 0.01392
4 star 0.01426
5 star 0.014953
6 lemon 0.01494

Table 6.18: The strong test for case M3

Case M1
Test Tolerance Similarity (%) Figure

ε-offset (mm) 0.0014 98.75 6-23-(A)
Maximum principal curvature (mm−1) 0.00014 93.75 6-23-(B)
Minimum principal curvature (mm−1) 0.00006 96.00 6-23-(C)

Principal direction (rad) 0.0004 96.00 6-23-(D)

Case M2
Test Tolerance Similarity (%) Figure

ε-offset (mm) 0.19 94.25 6-24-(A)
Maximum principal curvature (mm−1) 0.0059 94.25 6-24-(B)
Minimum principal curvature (mm−1) 0.003 96.00 6-24-(C)

Principal direction (rad) 0.05 93.25 6-24-(D)

Case M3
Test Tolerance Similarity (%) Figure

ε-offset (mm) 0.009 98.00 6-25-(A)
Maximum principal curvature (mm−1) 0.003 96.25 6-25-(B)
Minimum principal curvature (mm−1) 0.0016 96.00 6-25-(C)

Principal direction (rad) 0.012 98.50 6-25-(D)

Table 6.19: Quantitative similarity values for case M1, M2 and M3

(A) (B)

Figure 6-15: Matching of a fictitious automobile hood surface
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Figure 6-16: Comparison of lines of curvatures and umbilical points

(A) (B)

Figure 6-17: (a) Weak test (ε-offset) and (b) Intermediate test (maximum principal
curvature) based on Algorithm 2
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(A) (B)

Figure 6-18: (a) Intermediate test (minimum principal curvature) based on Algorithm
2 and (b) Intermediate test (principal direction) based on Algorithm 2

(A) (B)

(C)

Figure 6-19: Surfaces for the failure case
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Figure 6-20: Wireframe of surface A
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(A)

(C)

(B)

(D)

Figure 6-21: (A) ε-offset (B) Maximum principal curvature (C) Minimum principal
curvature (D) Principal direction
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(A) (B)

(C)

Figure 6-22: Umbilical points and lines of curvature
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(C)

(A) (B)

(D)

Figure 6-23: Case M1 : (A) ε-offset (B) Maximum principal curvature (C) Minimum
principal curvature (D) Principal direction
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(C)

(A) (B)

(D)

Figure 6-24: Case M2 : (A) ε-offset (B) Maximum principal curvature (C) Minimum
principal curvature (D) Principal direction
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(A)
(B)

(C) (D)

Figure 6-25: Case M3 : (A) ε-offset (B) Maximum principal curvature (C) Minimum
principal curvature (D) Principal direction
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Case M3

Case M1 Case M2

Figure 6-26: Wireframes for case M1, M2 and M3
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Case M2

Case M3

Figure 6-27: Umbilics for case M2 and M3
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this thesis, we have addressed problems of free-form matching, assessment of sim-
ilarity, and their applications to copyright protection. A matching problem includes
global and partial object matching for the point vs. NURBS surface and the NURBS
surface vs. NURBS surface cases with uniform scaling effects, and no a priori in-
formation on correspondence or initial transformation. The assessment of similarity
consists of three tests (weak, intermediate and strong tests) which are organized in
such a way that the two decision algorithms produce systematic and hierarchical re-
sults for a decision. The weak and intermediate tests compare the Euclidean distance,
and the principal curvature and direction, respectively, at the node points obtained
from the shape intrinsic wireframe. The strong test is performed when isolated generic
umbilical points are available, which can be robustly calculated by the IPP algorithm.

It is well known that umbilical points are stable with respect to small noise, and
their qualitative properties are maintained irrespective of scaling [74]. Therefore,
umbilical points may behave as fingerprints for a 3D surface, which in turn can be
used to uniquely identify the object for various purposes such as object recognition,
tracking and copyright protection.

Accurate and robust calculation of various intrinsic properties is very important
in this work. When a NURBS surface is provided, calculation of intrinsic properties
can be done analytically. However, estimation of shape intrinsic properties from
discrete points such as range data or piecewise linear polyhedral surface models is a
difficult problem since complete local surface information cannot be recovered from
the discrete points. For calculation of intrinsic properties such as umbilical points or
lines of curvature, a least squares NURBS surface fitting method is used to obtain an
approximated NURBS surface which is provided as input to the algorithms after high
frequency noise has been smoothed out by a low pass filter. However, since there is
no perfect method which can cover all cases, a different method needs to be employed
for the estimation of differential properties depending on the quality of input data.

In the KH method, user-defined tolerances are provided in the governing equa-
tions (4.6) to deal with the uncertainty inherent to the estimation of curvatures from
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discrete data points. Accurate estimation of curvatures can improve the accuracy and
performance of the KH method. If rough tolerances are used in equations (4.6), then
the area satisfied by the equations is large so that more candidate points are gener-
ated, which leads to poor performance of the selection process in the KH algorithm.
With more accurate curvature values, smaller tolerances can be used for equations
(4.6) to improve the overall performance of the KH method. When a 3D scanner is
used to digitize a physical surface, more dense data points can be obtained at three
selected locations for the KH method by scanning the regions around those locations
several times to estimate more accurate curvatures. Since the KH method does not
require data of the entire surface, the expected performance loss due to the increased
number of data points in the curvature estimation may be negligible and will not af-
fect the performance of the KH method. On the other hand, rough tolerances for the
equations (4.6) and the IPP algorithm may produce a result which can be effectively
used as an initial state for iterative algorithms such as the ICP algorithm and its
variants.

The optimization method proposed in this paper requires an initial interval of the
scaling factor which has to be supplied by a user. However, compared to any iterative
algorithms such as the ICP algorithm which needs 7 values (3 from translation, 3 from
rotation and 1 from scaling), only one initial interval is enough for the optimization
method because it incorporates the KH method which can handle a matching problem
of NGWOS or NPWOS type. Therefore, the solution process to the matching problem
can be simplified.

The overall performance of the optimization method can be improved by combin-
ing the golden section search and the secant method [30]. Near an optimum point
where the size of the interval from the golden section search is small, the secant
method may be used to reduce execution time using its higher convergence rate.

The proposed matching and similarity checking techniques can be used for copy-
right protection of NURBS surfaces or solids bounded by NURBS surface patches
as demonstrated in Chapter 6. A user can compare a suspicious object with an ob-
ject registered in an independent repository to check if the suspect is a copy of the
copyrighted one. The partial matching technique may provide a way to determine
whether or not part of the copyrighted object has been stolen.

7.2 Recommendations for Future Work

There are many cases where free-form objects represented by discrete data points
have to be matched and compared. The proposed matching algorithms can deal
with the point vs. surface or surface vs. surface matching cases so that they cannot
be directly used for free-form data objects in discrete data points. One solution is
to approximate the discrete data point with a surface and then use the surface for
matching. However, surface approximation of data points itself is a difficult problem.
Therefore, a method needs to be developed to use discrete data points directly in the
matching process. Similarity assessment methods for free-form objects represented
by discrete data points is another topic that needs to be discussed for future work.
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Unlike the point vs. surface or surface vs. surface cases, not only the minimum
distances but also intrinsic properties between two objects in discrete data points
have to be estimated reasonably. Such extensions to cover the point vs. point or
polygon vs. polygon case are necessary for the proposed matching algorithms to have
more applications in computer vision, recognition and digital library.

The similarity decision algorithms require various user-defined tolerances for a
decision. Those tolerances are very critical in making a decision if an object is a
copy of another object. Therefore, the theoretical basis for determination of those
tolerances needs to be established and evaluated by an independent party for unbiased
results of the algorithms.

Currently, the algorithm for shape intrinsic wireframing is semi-automatic. In
the areas near umbilical points where lines of curvature show singular behaviors and
near the boundary of a surfaces where lines of curvature cannot form quadrilateral
meshes, manual operations are required to complete the wireframe of the surface.
One promising approach for the automation of shape intrinsic wireframing is to use
geodesic curves exclusively. Construction of the geodesic curve is more flexible than
that of the line of curvature because the geodesic curve depends on the choice of two
boundary points, while the line of curvature is calculated from the principal direction
field which is determined by the shape of the surface. Therefore, the algorithm for
shape intrinsic wireframing can be made automatic by using geodesic curves, which
is recommended for future work.

Analysis of non-generic umbilical points is recommended for a future research
topic. In the current work, non-generic umbilical points are classified but are not
used in the process. Even though non-generic umbilical points are unstable under
small perturbations, understanding their properties and behaviors is significant to
deal with them properly in applications. In relation to non-generic umbilical points,
a study of the birth/death of generic umbilical points and its applications to matching
is recommended for a future research topic.

In this work, two different types of arithmetic are used: rounded interval arith-
metic and floating point arithmetic. Rounded interval arithmetic is exclusively used
for the formulation and solution to the systems of nonlinear equations in the calcu-
lation of umbilical points and the KH method using the IPP algorithm. Floating
point arithmetic is used for the other procedures. Since the current floating point
representation method used by most of computer systems has inherent problems in
representing floating point values, some operations in floating point arithmetic are
not robust. Therefore, in order to maintain robustness and consistency in the cal-
culation, it is recommended that the entire proposed algorithms be implemented in
rounded interval arithmetic. There may exist many mathematical properties that are
not clearly defined when interval arithmetic is used for analysis of umbilical points,
calculation of geodesic curves and lines of curvature, orthogonal projection and the
golden section search. Such uncertainties need to be resolved and properly handled
in the context of rounded interval arithmetic.
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Appendix A

Classification of Umbilical Points

In this appendix, theoretical analysis on classification of umbilical points is presented
based on the work by Porteous [96], Bruce et al. [17], Giblin [46] and Maekawa et
al. [74]. As described in Section 2.1.4, three characteristic lines are significant in
understanding the behavior of local surface structure in relation to umbilical points.

A.1 Cubic Form

In order to understand the relations between the characteristic lines and the cubic
part C(x, y) described in Section 2.1.4, we have to take a look at the structures and
characteristics of a cubic form V (x, y) defined by

V (x, y) = ax3 + 3bx2y + 3cxy2 + dy3. (A.1)

We define the Hessian of (A.1) as follows:

He(x, y) = (ac − b2)x2 + (ad − bc)xy + (bd − c2)y2. (A.2)

The root line of (A.1) is the set of points {(x, y)|V (x, y) = 0}. Similarly, the root line
of (A.2) can be defined as the set of points {(x, y)|He(x, y) = 0}. The type of the
cubic form (A.1) can be distinguished based on the root lines of (A.1) and (A.2) as in
Table A.1 [96]. When the cubic form (A.1) has three distinct real roots or the Hessian
has two complex roots, then the cubic form is classified as elliptic. Similarly, the cubic
form is of parabolic or hyperbolic type depending on the root lines of the cubic form
or the Hessian as summarized in Table A.1. The Hessian is important in the study of

Type Root lines of V (x, y) = 0 Root lines of He(x, y) = 0
Elliptic three real distinct Complex Conjugate

Parabolic three real (two coincide) real and coincide
Hyperbolic one real and two complex real distinct

Table A.1: Classification of the cubic form adapted from [96]

umbilical points since the root line directions of the Hessian of a cubic form close to an
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umbilical point approximate the principal directions near the umbilical point [46, 96]
so that we can investigate the behavior of the lines of curvature without calculating
the exact principal directions.

A.2 Characteristic Lines vs. Cubic Form

A.2.1 Γ1 : θ → 1
3(2e

iθ + e−2iθ)

The cubic form (2.30) is parabolic on the deltoid Γ1 [96]. This implies that there
are three root lines of (2.30) but two of them coincide. Inside the deltoid, the cubic
form (2.30) is elliptic [96]. It is hyperbolic outside the deltoid. This classification
is directly related to the number of ridge lines passing through an umbilical point,
and the existence of extrema of the principal curvatures near the umbilical point
[17, 46, 74]. Here, a ridge point is defined as an extremum point of a line of curvature,
and a ridge line is a set of such points [46, 79]. A ridge line is also identified as a
pre-image of a cuspidal edge on the focal surface [79]. Inside the deltoid, the number
of ridge curves is three, the extrema of principal curvatures exist, and an umbilical
point is of elliptical star type [17, 46]. On the other hand, outside the deltoid only one
ridge curve passes through an umbilical point, no extremum of a principal curvature
exists, and the umbilical point is of hyperbolic star type [17, 46].

A.2.2 |ω| = 1

On the circle |ω| = 1, the cubic form (2.30) is right-angled [96]. When the root
line directions of the Hessian (A.2) are mutually orthogonal, the cubic form (A.1) is
right-angled [96]. This implies that the maximum and minimum lines of curvature
are orthogonal at an umbilical point and form approximately a plain rectangular
grid pattern [96]. This circle is related to the index [46]. The index is defined as
an amount of rotation that a straight line segment tangent to lines of curvature
experiences when rotating in the counterclockwise direction along a small closed path
around an umbilical point [8, 74]. Inside the circle, the index is − 1

2
, and an umbilical

point is of star type. Outside the circle, the index is 1
2
, and the umbilical point is

classified as the lemon or monstar type [46, 74]. On the circle, the index value is
zero, and the umbilical point is of non-generic type. This circle is also related to the
birth/death of generic umbilical points under the evolution of a surface [96].

A.2.3 Γ2 : θ → (2eiθ + e−2iθ)

Another cubic form, called the Jacobian cubic form, is defined to explain the deltoid
Γ2 as follows:

U(x, y) = bx3 − (2c − a)x2y − (2b − d)xy2 − cy3, (A.3)

whose root lines are tangent to the lines of curvature near an umbilical point [46].
On the deltoid Γ2, the cubic form (A.3) becomes parabolic [96]. The Jacobian cubic
form (A.3) is related to the number of extrema of the cubic form (A.1) [96]. The
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cubic form (A.1) can be represented as C(r, θ) in polar coordinates with x = r cos θ
and y = r sin θ, and the expression of the direction in which the local extrema of the
cubic form C(r, θ) occur, i.e. dC(θ)

dθ
= 0 [74] is reduced to the Jacobian cubic form

(A.3). Inside the deltoid Γ2, there are three real root lines of the Jacobian cubic form
(A.3) or three directions of the extrema of the cubic form (A.1), which implies that
three lines of curvature converge to an umbilical point [46, 96]. This umbilical point
is classified as star or monstar type [46, 96]. Outside the deltoid Γ2, there is one
root line of the Jacobian cubic form (A.3), and no extremum of the cubic form (A.1)
exists. An umbilical point of this case is of the lemon type [46, 96].

A.3 Inverse Transformation

One interesting aspect of the ω plane representation is the inverse process of mapping
the cubic form (A.1) onto the ω plane. With a given ω value, we cannot recover the
original coefficients of the cubic form (A.1) since the rotation angle and the scaling
factor which are used in the map of the cubic form (A.1) onto the ω plane cannot be
obtained. Instead, we can obtain the coefficients of the cubic form (A.1) which yield
the same qualitative nature of an umbilical point and surface structure.
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Appendix B

Formulation of Gaussian and Mean
Curvatures

Suppose that we have an integral Bézier surface patch of degree m and n in u and v
directions, respectively, as follows:

r(u, v) =
m∑

i=0

n∑

j=0

pijBi,m(u)Bj,n(v), (B.1)

where u, v ∈ [0, 1] and pij are the control points. Equations (4.6) can be represented
by Bernstein polynomials using equations (2.11), i.e.

LN − M2 − Ki(EG − F 2) = 0, (B.2)

2FM − EN − GL − 2Hi(EG − F 2) = 0, (B.3)

where i = 1, 2, 3. The first fundamental form coefficients can be obtained in Bernstein
polynomial form using the first derivatives of r with respect to u and v. The unit

normal vector N =
∂r

∂u
× ∂r

∂v

‖ ∂r

∂u
× ∂r

∂v
‖ , however, contains a square root term in the denominator.

We can substitute the numerator for nd and the denominator for nd which is equivalent
to

√
EG − F 2. Then the second fundamental form coefficients can be expressed as

follows:

L = N · ∂2r

∂u2
=

1

nd

(nd ·
∂2r

∂u2
) =

ls
nd

, (B.4)

M = N · ∂2r

∂u∂v
=

1

nd

(nd ·
∂2r

∂u∂v
) =

ms

nd

, (B.5)

N = N · ∂2r

∂v2
=

1

nd

(nd ·
∂2r

∂v2
) =

ns

nd

. (B.6)

115



Using the auxiliary variable method [91], we introduce nd as an auxiliary variable in
the formulation. Then, the system of equations (B.2) and (B.3) becomes

n2
d − (EG − F 2) = 0, (B.7)

lsns − m2
s − Kin

4
d = 0, (B.8)

2msF − Ens − Gls − 2Hin
3
d = 0. (B.9)

Equations (B.7)-(B.9) can be rewritten using the linear precision property as follows:

4m−2∑

i=0

4n−2∑

j=0

2∑

k=0

αijkBi,4m−2(u)Bj,4n−2(v)Bk,2(σ) = 0, (B.10)

6m−4∑

i=0

6n−4∑

j=0

4∑

k=0

βijkBi,6m−4(u)Bj,6n−4(v)Bk,4(σ) = 0, (B.11)

5m−3∑

i=0

5n−3∑

j=0

3∑

k=0

γijkBi,5m−3(u)Bj,5n−3(v)Bk,3(σ) = 0, (B.12)

where σ = nd−a

b−a
(0 ≤ σ ≤ 1) is a scaled parameter of nd with a ≤ nd ≤ b. Here a and

b are square roots of the minimum and the maximum Bernstein coefficients of the
expression EG− F 2, respectively. When the minimum of the Bernstein coefficient of
EG − F 2 is negative, then we just set a = 0. The coefficients of equations (B.10)-
(B.12) are provided as input to the IPP algorithm.

A rational Bézier surface patch is given as follows:

r(u, v) =

∑m

i=0

∑n

j=0 pijwijBi,m(u)Bj,n(v)
∑m

i=0

∑n

j=0 wijBi,m(u)Bj,n(v)
, (B.13)

where u, v ∈ [0, 1], pij are the control points and wij are the non-negative weights. If
wij = 1, then equation (B.13) is reduced to (B.1). Let r be rn

rd

. Then we can derive

equations (4.6) in a similar manner.
In the computer implementation, we evaluate the coefficients of the governing

nonlinear polynomial equations in multivariate Bernstein form starting from the given
input surface using the arithmetic operations in Bernstein form [91] executed either
in rational or in rounded interval arithmetic.
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