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Abstract

The ocean is characterized by a multitude of powerful, sporadic biophysical dynamical
events; scientific research has reached the stage that their interpretation and predic-
tion is now becoming possible. Ocean prediction, analogous to atmospheric weather
prediction but combining biological, chemical and physical features is able to help us
understand the complex coupled physics, biology and acoustics of the ocean.

Applications of the prediction of the ocean environment include exploitation and
management of marine resources, pollution control such as planning of maritime and
naval operations. Given the vastness of ocean, it is essential for effective ocean pre-
diction to employ adaptive sampling to best utilize the available sensor resources in
order to minimize the forecast error. It is important to concentrate measurements
to the regions where one can witness features of physical or biological significance in
progress. Thus automated feature extraction in oceanographic visualization can facil-
itate adaptive sampling by presenting the physically relevant features directly to the
operation planners. Moreover it could be used to help automate adaptive sampling.

Vortices (eddies and gyres) and upwelling, two typical and important features of
the ocean, are studied. A variety of feature extraction methods are presented, and
those more pertinent to this study are implemented, including derived field generation
and attribute set extraction. Detection results are evaluated in terms of accuracy,
computational efficiency, clarity and usability.

Vortices, a very important flow feature is the primary focus of this study. Several
point-based and set-based vortex detection methods are reviewed. A set-based vortex
core detection method based on geometric properties of vortices is applied to both
classical vortex models and real ocean models. The direction spanning property, which
is a geometric property, guides the detection of all the vortex core candidates, and
the conjugate pair eigenvalue method is responsible for filtering out the false positives
from the candidate set. Results show the new method to be analytically accurate and
practically feasible, and superior to traditional point-based vortex detection methods.
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Detection methods of streamlines are also discussed. Using the novel cross method
or the winding angle method, closed streamlines around vortex cores can be detected.
Therefore, the whole vortex area, i.e., the combination of vortex core and surrounding
streamlines, is detected. Accuracy and feasibility are achieved through automated
vortex detection requiring no human inspection. The detection of another ocean
feature, upwelling, is also discussed.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Kawasaki Professor of Engineering

Thesis Reader: Seth Teller
Title: X-Consortium Associate Professor of Computer Science & Engineering
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Chapter 1

Introduction

1.1 Poseidon Project

Research on realistic nonlinear interdisciplinary processes has considerably expanded

the knowledge of the complex coupled physics, biology and acoustics of the oceans.

In order to effectively manage coastal marine resources and their impact on climate,

powerful and sporadic biophysical events must be scientifically understood and pre-

dicted. To achieve this end, ocean forecasting, a process involving biological, chemical

and physical aspects, is needed [36].

Essential to ocean forecasting is the continual melding of new observations into

predictive dynamical models, and such observations must be obtained at the right

time and space in the episodic ocean, thus calling for adaptive sampling. In spite

of effective omission and aggregation efforts, the physical, biological and acoustical

state variables and parameters remain large in number; this necessitates the evolu-

tion of the dynamical model parameters and structures during the prediction through

adaptive modelling. The objective of the Poseidon project is to achieve efficient mul-

tiscale interdisciplinary ocean prediction with real-time objective adaptive sampling,

assimilation of multiple streams of interdisciplinary data, and autonomous adaptive

modelling through an effective union of information technology and ocean science.

Facilitated by the widely available, high-performance computing hardware, net-

working infrastructure, tools and interfaces for access, it is possible to construct a
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distributed ocean prediction computing system and using networked, scientific com-

puting to effectively address a wide range of computationally intensive problems. The

Poseidon project is developing an information system that can address the needs of

interdisciplinary ocean scientists, making it possible to construct and execute complex

domain-specific workflows in a simple and robust way.

The Poseidon project is based on a series of Observation System Simulation Ex-

periments (OSSEs) with the Harvard Ocean Prediction System (HOPS) for three

regions of the (near) coastal northwestern Atlantic which exhibit coastal upwelling,

spring and tidal mixing plankton blooms, and the mesoscale eddy injection of nutri-

ents into the upper ocean [36]. Acoustic tomographic data and acoustical and optical

backscatter data are incorporated into the data streams for assimilation. As the sys-

tem is developed and tested, the OSSEs are iterated from both ocean and information

sciences approaches. The Poseidon project attempts to enhance scientific productiv-

ity, cultivate a new generation of interdisciplinary researchers, and contribute to the

prediction and monitoring of marine resources in the multiuse coastal waters.

1.2 Harvard Ocean Prediction System (HOPS)

The Harvard Ocean Prediction System (HOPS) is a system of integrated software for

multidisciplinary oceanographic research [63] [1]. It is designed to provide:

• “the naval ocean forecaster with accurate estimates of ocean fields in

a timely and reliable manner”;

• “the physical oceanography scientist with realistic simulations of the

ocean in order to study fundamental dynamical mesoscale processes”;

• “the acoustical oceanography scientist with tools to obtain reliable

representations of the mesoscale sound speed variability”;

• “the bio-geochemical oceanography scientist with an integrated en-

vironment to carry out coupled physical-bio-geochemical model sim-

ulations”.
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HOPS is configured as a nowcast/forecast system and is designed to meet ship-

board operational needs requiring adaptability to diverse data streams and dominant

physics in a given region. It is able to be exercised fully as a stand-alone system uti-

lizing ship gathered information only. HOPS, a research and training tool for physical

oceanography scientists, can facilitate the generation of physical fields suitable for pro-

cess studies and allow efficient exploration and exploitation of new algorithms and

ideas. The configuration of HOPS for interdisciplinary research serves as a laboratory

for the investigation of the influence of the physical environment on the evolution of

the oceanic bio-geochemical mass and sound propagation.

The distributed version of HOPS includes the software structured to work in an

integrated fashion especially with regard to inputs and outputs. At the heart of HOPS

is a primitive equation dynamical model supported by a series of routines, including

data gridding routines, initialization and assimilation field preparation routines, vi-

sualization software, data preparation codes and topography conditioning software.

The overall system schematic is shown in Figure 1-1 on page 24.

1.2.1 Harvard Primitive Equation Model

Models included in the Harvard Dynamical Modelling System are a Primitive Equa-

tion Model [52], a Quasi-Geostrophic Model [35] and a Surface Boundary Layer

Model [58]. The emphasis here is placed on the the Harvard Primitive Equation

Model for Coastal and Deep water, which is applicable to any oceanic region, with

arbitrary coastline and/or open boundary segments. The GFDL (Geophysical Fluid

Dynamics Laboratory) model offers the dynamical integration algorithm. The deep

ocean version of the Harvard model was then developed by adding open boundary

conditions, terrain following coordinates, and subgrid scale physics appropriate for

mesoscale resolution [32].

HOPS can provide accurate computations in the deep ocean with steep topogra-

phy, the shelf break and the shelf region.

Bryan [8] and Cox [12] both documented the GFDL algorithms, and Spall and

Robinson [52] further expounded the details of the deep ocean model developments.
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Figure 1-1: System schematic of the HOPS. Chl, and PAR stand for chlorophyll, and
Photosynthetically Active Radiation.
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What follows is a description of recent developments. These and future developments

are facilitated by modular codes managed under the UNIX source control system

and code pre-processing options allowing for flexible support of diverse hardware

platforms, physics and algorithm options.

Model Physics

According to [31], “the basis for the Primitive Equation Model is the Navier-Stokes

equations in a rotating reference frame with the two main simplifying assumptions,

appropriate for most deep ocean and shelf regions. One assumption is the Boussinesq

approximation, which retains density variations only in the buoyancy terms. The

other is the hydrostatic approximation. Further approximations based on dimen-

sional analysis are included in the canonical primitive equations. In particular, the

geopotentials are assumed to lie on concentric spheres; the gravitational field is taken

to be constant throughout the domain; only the vertical component of the earth rota-

tion vector is retained; the solid boundaries are assumed to be rigid and impermeable;

and the heat and salt fluxes normal to the solid boundaries are assumed to be null.

In the future, a free surface option will be provided.”

With these assumptions, the canonical primitive equations are [37]:

∇xy · ~u + ∂w
∂z

= 0

δ~u
δt

+ f~ez × ~u = −∇xyp + Div τ + ~Fm

∂p
∂z

= −gρ

∂T
∂t

= Div ~qT + FT

∂S
∂t

= Div ~qS + FS

ρ = ρ(T, S, p)

(1.1)

where, Div is the three-dimensional divergence operator; ∇xy· is the horizonal

divergence operator; ∇xy is the horizontal gradient; ~ez is a unit vector in the vertical

direction; δ/δt is the material derivative; ~u, w the horizontal and vertical velocities; p

is the pressure; ρ is the density; f is the Coriolis parameter; τ is the stress tensor; S

is the salinity; T is the temperature; ~Fm, FT and FS are the chosen parameterizations
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for additional subgrid scale physics and ~qT , ~qS are the heat and salinity flux vectors.

1.2.2 Grid Types

Horizontal Coordinates

There are three types of horizontal domains currently supported by HOPS: Cartesian,

spherical and rotated spherical (Figure 1-2 on page 28) [32] [63].

1. Cartesian: The Cartesian grids are local tangent plane approximations to a

sphere, often used for a small regions where spherical effects are relatively unim-

portant. The Cartesian transformation is defined by three parameters:

(latc, lonc): The “center” of the transformation. Geographic coordinates are

converted to Cartesian based on the distance to this point.

θrot: The rotation angle. The Cartesian coordinates, (x,y), are rotated from

their geographic counterparts, (lat, lon), by the angle θrot.

The Cartesian domains are further defined with six additional parameters:

(nx, ny): The number of grid points in each direction.

(dx, dy): The grid spacing in each direction.

(∆x, ∆y): The offset (meters) between the center of the domain and the center

of the transformation.

2. Spherical: The spherical grids are geographic latitudes/longitudes. They are

often used where spherical effects are important and it is more convenient to

keep geographic orientation. There is no transformation, so latc, lonc and θrot

are all zero. The domains are defined with six parameters:

(nx, ny): The number of grid points in each direction.

(dx, dy): The grid spacing in each direction.

(∆x, ∆y): The offset (degrees) between the center of the domain and the center

of the transformation. For the spherical grid, (∆x, ∆y) become the (lat, lon) of

the center of the grid.

26



3. Rotated Spherical: A spherical grid in which the equator had been moved to

reduce model grid distortions. It is often used for regions where spherical effects

are important and reducing model grid distortions outweighs any benefit of

maintaining geographic orientation. The rotated spherical transformation is

defined by three parameters:

(latc, lonc): The “center” of the transformation, which is the (0,0) point of the

rotated spherical system.

θrot: The rotation angle. The angle between the rotated coordinates and the

geographic coordinates at the“center” of the transformation.

The rotated spherical domains are defined with six additional parameters:

(nx, ny): The number of grid points in each direction.

(dx, dy): The grid spacing in each direction.

(∆x, ∆y) The offset (degrees) between the center of the domain and the center

of the transformation.

Vertical Coordinates

There are three types of vertical domains currently supported by HOPS: σ Coordi-

nates, Hybrid Coordinates and Double σ Coordinates (as in Figure 1-3 on page 30).

1. σ Coordinates: The depth of a model is a fixed fraction of the total water

column.

zi,j,k = σk ∗ hi,j (1.2)

The σ coordinates are most useful in regions with high topography and where

maintaining near surface resolution is not necessarily critical.

2. Hybrid Coordinates: A generalization of (1). The top kc levels are flat, the

remainders are terrain that follows,
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Figure 1-2: Horizontal grids in HOPS: Cartesian, spherical and rotated spherical.
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zi,j,k =

 zk (k ≤ kc)

zc + σk ∗ (hi,j − zc) (k > kc)
(1.3)

Where zc is the depth of the flat interface between the two vertical coordinate

systems and the convention 0 ≤ σk ≤ 1 is used.

The hybrid coordinates are often used in deep ocean where maintaining near

surface resolution is important.

3. Double σ Coordinates: A generalization of (2). The constant coordinate inter-

face, zc, is replaced by one that varies in the horizontal to ride above topography.

The variable coordinate interface, fi,j, is given by:

fi,j =
zc1 + zc2

2
+

zc1 − zc2

2
tanh{ 2α

zc1 − zc2

[hi,j − href ]} (1.4)

Where,

zc1 : The shallow limit for the coordinate interface.

zc2 : The deep limit for the coordinate interface.

href : The“switching” depth. fi,j is halfway between zc1 and zc2 at hi,j = href .

α: The slope parameter. How fast f responds to changes in the topography, h.

Also a limit on the slope of f , ‖∇f‖ ≤ α‖∇h‖.

The vertical system is: a σ system referenced between the surface and fi,j above

a second σ system referenced between fi,j and the bottom.

zi,j,k =

 σk ∗ fi,j (k ≤ kc)

fi,j + (σk − 1) ∗ (hi,j − fi,j) (k > kc)
(1.5)

where, the (arbitrary) convention 0 ≤ σk ≤ 1 for k ≤ kc and 1 ≤ σk ≤ 2 for

k > kc has been used. The double σ coordinates are most useful in regions

with shallow topography and where it is important to maintain near surface

resolution.
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Figure 1-3: Vertical grids in HOPS: (a)Single σ coordinates. (b-c) Hybrid coordinates.
(d-e) Double σ coordinates.
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Figure 1-4: (a) Horizontal layout. (b) Vertical layout.

An example of horizontal and vertical layout of a grid is as in Figure 1-4 on

page 31. In horizontal layout, T stands for tracers (temperature, salinity, etc) and

streamfunctions. U stands for both horizontal velocity components. In vertical layout,

Tracer vertical boxes are shown, velocity vertical boxes have the same layout, merely

shifted 1/2 grid space horizontally. W stands for vertical velocities.

In this paper we present our initial approach to vortex detection in ocean flows,

applying 2D algorithms to the flow at multiple constant depths. Such methods,

while less comprehensive compared to their 3D counterparts, allow us to efficiently

identify horizontal structures in the ocean. Especially in the case of stratified ocean

flows (which are more prevalent during the summer months) feature extraction in the

horizontal dimensions can be very useful. As an added benefit, they are considerably

less expensive and less sensitive to the vertical grid irregularities of most ocean models

than fully 3D algorithms.

1.3 Real Time Regional Forecasting

Being intermittent, eventful and episodic, the ocean is a turbulent fluid in essence

and its circulation is characterized by a myriad of dynamic processes occurring over a
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vast range of nonlinearly interacting scales both in time and space. Ocean forecasting

allows us to effectively and efficiently manage operations on and within the sea. Such

forecasting has been used for military operations as well as scientific research [41].

Forecasting usually starts with observations that can initialize dynamical forecast-

ing models; further observations are then assimilated into the models as the forecasts

progress in time. As a matter of fact, such observations are usually difficult, costly

and incomprehensive. It goes without saying that if a region of the ocean were to

be sampled uniformly over an arbitrary space-time grid, only a small subset of those

observations would have significant impact on the accuracy of the forecasts. In con-

trast, accurate forecasts target the intermittent energetic synoptic dynamical events

and form the basis for designing a sampling scheme that can observe the ocean state.

Adaptive sampling of features of greatest impact increases efficiency as it can reduce

the observational requirements by several orders of magnitude.

The oceans evolve as time goes by, responding to both external surface and body

forces, and internal dynamical processes. Some examples of external surface and body

forces include tidal forces, winds and surface fluxes of heat and fresh water. Given the

importance of air-sea interaction, ocean forecasts requires an accurate meteorological

forecast. Analogous to atmospheric weather phenomena, ocean internal instabilities

and resonances, including meanders of currents, fronts, eddies and wave propagation,

are called the internal weather of the sea. Their spatial scales are short with respect

to global scale, which requires the ocean forecasts to be carried out regionally as

opposed to globally.

Furthermore, the regional forecast problem has additional forces appearing as

fluxes through horizontal boundaries, a representation of both larger scales of direct

forcing, remote internal dynamical events and land-sea interactions in the littoral

zone. To develop a regional forecast system and capability, both the scales and

processes of interest and the dominant scales and processes in the region are essential.

Some of the fields of forecast interest are physical, acoustical, biological, optical,

chemical and sedimentological state variables. Examples include velocities, temper-

ature, sound speed, irradiance, plankton concentrations, scattering profiles and sus-
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pended particle concentrations. Multi-disciplinary sampling schemes are constrained

by the interdisciplinary compatibility requirements. Some variables are of direct in-

terest whereas others are helpful in interdisciplinary field estimation such as the case

of acoustic travel times in the estimation of temperature gradients. As a result, the

scope of ocean forecasting has expanded, which in turn leads to rise of a challenging

adaptive sampling problem, i.e., the design of sampling schemes for the acquisition

of multi-scale compatible interdisciplinary data sets based on real time observations

and realistic forecasts.

1.4 Adaptive Sampling

Adaptive sampling can help to collect the most useful data of an ocean field and

help compute error forecasts through the use of quantitative criteria or goals. Cur-

rent adaptive sampling methods [29] [44] [43] combine field and error forecasts with

a priori experience to intuitively choose the future sampling. This approach can

conceptually be then automated: quantitative adaptive sampling utilizes forecasts as

inputs to mathematical criteria whose real-time optimization produces the sampling

pattern [42].

Current forecast capabilities involve the future evolution of ocean fields, of their

variabilities and uncertainty statistics [28]. Various constraints remain, including

practical considerations (platforms and sensors availability, ship speeds, autonomous

underwater vehicle (AUV) range, weather conditions), dynamical motives (search

for precursors of the primary phenomenon, dynamical model verifications), and cost

penalties (fuel, batteries, labor costs). Moreover, scientific and technical constraints

exist for the measurement model to generate the actual state variables to be assimi-

lated. Finally, in varied representations, several goals or criteria are also a possibility.

One type of optimum can be the sampling that minimizes the forecast of the field

error variance confined by cost penalties and practical constraints. Others belong to

the best skill evaluation samplings that perfectly define specific properties of future

dynamics, independent of past data and other constraints. Assimilation studies also
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use data assimilation criteria to develop the goal accordingly. Thus, the assimilation

study aiming at minimizing the field error with a variance metric would set the adap-

tive sampling goal as determining the future sampling that minimizes the trace of the

error covariance matrix.

For linear models, the optimization can be implemented independent of future data

values, making use of the dynamical and measurement models and their uncertainties.

For non-linear models, data values make a difference and a forecast OSSE needs to

be done during the optimization process. Research on optimal control and estimation

theory can be applied and extended by interdisciplinary oceanographers to obtain the

most useful sampling methods.

The process of feature extraction discussed in this thesis facilitates user-assisted

adaptive sampling and could eventually be used to help automate this optimization

procedure.

1.5 Problem Statement

Given the vastness of ocean, it is essential for effective ocean prediction to employ

adaptive sampling to best utilize the available sensor resources in order to minimize

the forecast error. It is important to concentrate measurements to the regions where

one can witness features of physical or biological significance in progress. Thus,

automated feature extraction in oceanographic visualization can facilitate adaptive

sampling by presenting the physically relevant features directly to the operation plan-

ners. Moreover it could be used to help automate adaptive sampling. Therefore, the

study of automated feature extraction in oceanographic visualization is introduced.

A series of Observation System Simulation Experiments (OSSEs) with the Harvard

Ocean Prediction System (HOPS) provide the basis, the large-scale HOPS datasets

in different ocean regions, for this study. The task is to detect typical oceanographic

features from these large-scale datasets.

Vortices (eddies and gyres) and upwelling, two typical and important features of

the ocean, are studied. A variety of feature extraction methods are presented, and
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those more pertinent to this study are implemented, including derived field generation

and attribute set extraction. Detection results are evaluated in terms of accuracy,

computational efficiency, clarity and usability.

Vortices, a very important flow feature is the primary focus of this study. Several

point-based and set-based vortex detection methods are reviewed. A set-based vortex

core detection method based on geometric properties of vortices is applied to both

classical vortex models and real ocean models. The direction spanning property, which

is a geometric property, guides the detection of all the vortex core candidates, and

the conjugate pair eigenvalue method is responsible for filtering out the false positives

from the candidate set. Detection methods of streamlines are also discussed. Using

the novel cross method or winding angle method, closed streamlines around vortex

cores can be detected. Therefore, the entire vortex area, i.e., the combination of

vortex core and surrounding streamlines, is detected. Accuracy and feasibility are

achieved through automated vortex detection requiring no human inspection.

The detection of upwelling using integration methods is also discussed.

1.6 Thesis Outline

The organization of this thesis is as follows.

• Chapter 2 provides an overview of feature extraction and scientific visualization

techniques.

• Chapter 3 discuss vortex detection. First, different vortex models are presented.

Second, the point-based vortex detection methods and set-based vortex detec-

tion methods are reviewed. Finally, a geometric-based vortex core detection

method and a novel “cross” method to detect closed streamlines are introduced.

• Chapter 4 describes upwelling detection.

• Chapter 5 provides conclusions and suggestions for future work.

‘
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Chapter 2

Feature Extraction and

Visualization

2.1 Feature Extraction

Features are regions of interest in a data set, be it a single grid location or a set of

nodes from the data set. There are several methods available to extract the feature-

sets from the data sets. For example, in the area of vortex identification, there are two

categories of algorithms, point-based and set-based methods, which will be discussed

later. The means of feature extraction are feature criteria, which depend on the

scientific domain as well as the specific features of interest. For example, it could be

a Boolean criterion function, consisting of a logical combination of scalar thresholds,

applied to data values or to derived data values such as velocity gradients [53] [57].

Attribute sets are defined as sets of characteristic values computed from the ex-

tracted features in the data set. They can involve a combination of scalars, tensors and

vectors. When a feature goes beyond a single grid position or cell, relevant attributes

including volume, mean data value, center and various moments can be obtained by

using volume integrals to do an integration over this region. Attributes fall into two

categories, either purely geometric or involving a combination of geometry and the

underlying data values.

In short, features are defined to be thresholded, connected regions. The following
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steps required to identify these regions:

1. Find the nodes which meet certain threshold criteria.

2. Partition the nodes into connected regions.

3. Extract the bounding surface of each connected region.

2.1.1 Oceanographic Features

There are many oceanographic features in the ocean, such as upwelling, fronts,

jets/meanders, vortices, geostrophic turbulence etc. These oceanographic features are

caused by combined rotation and stratification effects. For instance, coastal upwelling

is a phenomenon resulting from wind forcing, Ekman dynamics and geostrophy [13].

A front is a relatively narrow region of intensified gradients of fluid properties

between two main fluid masses. Under the action of Coriolis forces, the process of

geostrophic adjustment is at work, leading to a relatively intense flow aligned with

the front. The much weaker density gradients in the main part of each fluid mass

confine the motion to the frontal region, and the flow exhibits the form of a jet.

The jet has a velocity maximum, coinciding more or less with the location of the

maximum density gradient, on both sides of which the velocity decays. Meanders

and shed vortices can also exist in a jet area. Meanders on a jet do not remain

stationary but propagate, usually downstream and rarely upstream. A vortex, or

eddy, is defined as a closed circulation that is relatively persistent, which means that

the turnaround time of a fluid particle embedded in the structure is shorter than

the time during which the structure remains identifiable. When several eddies are

present and are not too distant from each other, interactions are inevitable. Vortices

shear and peel off the sides of their neighbors and, at times, merge to create larger

vortices. The sheared elements either curl onto themselves, forming new, smaller

vortices, or dissipate under the action of viscosity. The net result is a combination

of consolidation and destruction. The state of many interacting vortices under the

influence of Coriolis effects is geostrophic turbulence.
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Research in detecting these features would help understanding the complex cou-

pled physics, biology and acoustics of the oceans and could be used to help automate

adaptive sampling.

2.2 Scientific Visualization

Visualization literally means making things visible. In general, it is concerned with

providing visual images to understand something that can not be directly seen under

normal circumstances. In the context of this paper, the meaning of visualization is

confined to the visualization of data stored in a computer, the goal of which is to ex-

plore and understand data sets. As a subcategory of computer graphics, visualization

refers to algorithms, programs, techniques and systems that produce images.

A review of the field of visualization in computer graphics can be found in [34].

Visualization could again be divided into two sub-fields – information visualization

and scientific visualization. Information visualization deals with discrete data often

with high dimensionality and depicts properties of a large but finite number of data

items. Scientific visualization, on the other hand, is good at handling continuous

data often with low dimensionality. Such data represents a continuous field, though

in practice it is usually sampled on a discrete set of locations. The two subfields

sometimes merge.

2.2.1 Volume Visualization Techniques

There are a great variety of volume visualization techniques able to probe 3D fields,

and they differ on the type of field being investigated, be it a scalar, vector or tensor,

and the type of information sought. Isosurface and volume rendering are two major

3D visualization methods to explore scalar volume datasets.

Isosurface

An isosurface is defined as a surface of a constant threshold within the dataset and

contains points where p(x, y, z) = α for a particular threshold value α. To approxi-
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mate an isosurface, polygonal primitives such as triangles can be generated by surface

fitting algorithms and then projected onto a 2D display.

As the most frequently seen isosurface technique, the marching cubes algorithm [30]

constructs a contour surface for every cell in the volume. A case table is set up that

enumerates all possible topological states of a cell, taking consideration of combina-

tions of scalar values at the cell vertices. The number of topological states relies on

the number of cell vertices, and the number of vertex-to-contour value relationships.

When the vertex’s scalar value is larger than that of the contour line, the vertex is

considered within the isosurface. In the same vein, vertices with scalar values lower

than the contour value are defined to be outside the isosurface. The resulting binary

encoding creates indices for a case table, which denote how the contour intersects the

cell. The algorithm marches through the volume one cell after another, and linear in-

terpolations are used to calculate the isosurface locations. The isosurface is complete

after all the cells are visited. Since the marching cube algorithm tends to produce a

large number of triangles, a triangle decimation algorithm is useful in reducing this

number.

Volume Rendering

An isosurface is only a partial representation of the dataset. For a complete view of

3D data, a class of techniques known as volume rendering offers an inside picture of

the data. Volume rendering refers to an approximate simulation of the propagation

of light through a participating medium represented by the volume. In comparison to

the traditional surface rendering techniques, this offers a more effective way to convey

information within volumetric data as it can project the entire 3D volume directly

onto a 2D plane.

Object-order and image-order are two basic approaches of volume rendering [17].

The former uses a forward mapping scheme to project voxels onto the image plane

whereas the latter uses a backward mapping where rays are cast from each pixel

in the image plane through the volume to determine the pixel color results. Some

researchers have also combined the two techniques. Volume rendering algorithms
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involve a transfer function to blend or composite data onto a 2D image plane. This

transfer function has to be chosen with deliberation to be able to offer segmentation

and generate surface like objects. The vector and tensor fields can be visualized by a

set of arrows, other point icons or glyphs, which is discussed in detail in [46] [62].

2.2.2 Scientific Dataset Format

The HOPS data are stored in the NetCDF format [1]. The Network Common Data

Form, or NetCDF, is an interface to a library of data access programs for storing and

retrieving scientific data [4]. NetCDF is an abstraction that supports a view of data

as a collection of self-describing, network-transparent objects that can be accessed

through a simple interface. Collections of named multidimensional variables can be

randomly accessed, without knowing details of how the data are stored. Auxiliary

information about the data, such as what units are used, can be stored with the data.

Generic utilities and application programs have been written that access arbitrary

NetCDF files and transform, combine, analyze, or display specified fields of the data.

The development of such applications was led to improved accessibility of data and

reusability of software for scientific data management, analysis, and display. The

NetCDF interface is supported for the C, FORTRAN and Java computer languages,

and for UNIX and Windows operating systems. A NetCDF file has dimensions,

variables, and attributes. These components can be used together to capture the

meaning of data and relations among data fields in a scientific data set. A NetCDF

file is constructed as:

netCDF name {

dimensions: ...

variables: ...

data: ...

}

NetCDF dimension declarations appear after the dimensions keyword, NetCDF

variables and attributes are defined after the variables keyword, and variable data
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assignments appear after the data keyword.

Data can be categorized into scalars, vectors, and tensors . Scalar data is a

magnitude without a direction, for example, temperature, salinity, density, transport

streamfunction, etc. Vector data consists of magnitude and directions, which are

usually represented as an n-tuple, where n is the dimension of the space. In 3D, it

is represented as a triplet of values (x,y,z). Total velocity, geostrophic velocity and

vorticity are examples of vectors. Tensors are complex mathematical generalizations

of scalars, vectors and matrices. A tensor of rank 0 is a scalar, rank 1 a vector, rank

2 a matrix, and a tensor of rank 3 is a three-dimensional rectangular array. Tensors

of higher rank are k-dimensional rectangular arrays. Stress and strain are examples

of symmetric tensors. However, in HOPS NetCDF data files, there is no tensor field

available.

In HOPS, datasets are sampled on 3D grids. In general, grids are organized to

resemble the actual geometry under approximation. The space where the physical

phenomena are defined is referred to as the physical space, where data are sampled on

the grid nodes and stored in discrete forms of numerical values. On the other hand, in

computational space, data are organized into a rectangular uniform mesh in a logical

order to ease numerical computation. Between the two spaces, mapping in both

directions must be done. Numerical computations performed in the computational

space generate results that are mapped back into the physical space for visualization

purposes.

2.2.3 Visualization Pipeline

The process of obtaining an image from a data set can be roughly classified as four

stages. The final image is achieved through four stages of operations on the original

data. The first stage is data input during which a data set is read in or generated,

resulting in the original field data in the form of a grid. The second stage is filtering,

where several filters may be applied on the data. Both the input and output is a grid

in most cases. The third stage is mapping during which the grid data is transformed

into geometrical primitives. In this key visualization step, the data are converted into
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a collection of triangles, lines, points or icons. The final stage is rendering, where

an image is finally generated by rendering the geometrical primitives according to a

particular computer graphics model.

Most algorithms targeted at scientific visualization are associated with the map-

ping stage. Marching Cubes [30], an approximation of an iso-surface, is the most

prominent visualization algorithm. Other commonly used visualization techniques

include scatter plots, contour plots, arrow plots, height field representation and di-

rect volume rendering techniques [14].

2.2.4 HOPS Visualization Pipeline

Visualization in HOPS is achieved in the HOPS Plotting Package [1]. The HOPS data

are stored in NetCDF format. In addition, an input script .in file which includes

plotting commands, the parameters input file, the color palette input file and the

contour parameters input file are also needed in order to get visualization results.

The plotting package has five executable programs:

• cnt ncar: horizontal contours, non-color version.

input script: pe cnt.in or qg cnt.in

• ccnt ncar: horizontal contours, color version.

input script:pe ccnt.in or qg ccnt.in

• ccntmd ncar: horizontal contours, color version, multiple domains1.

input script: ccntmd ncar.in

• sec ncar: cross-section contours, non-color version.

input script: pe sec.in or qg sec.in

• csec ncar: cross-section contours, color version.

input script: pe csec.in or qg csec.in

1HOPS can handle nested domains.
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The prefixes ”pe” and ”qg” in these script file names indicate the type of field

classification used: either PE (Primitive Equation) or QG (Quasi-Geostrophic) field

identifiers.

The data fields in all “horizontal” levels (discrete constant σ-value isosurfaces) in

a HOPS data file can be visualized. The data fields at an actual depth, which are

interpolated from existing levels, can also be visualized. Nowcasts and forecasts can

be obtained.

The filtering is done by HOPS Fortran 77 routines and our newly developed feature

extraction Fortran 77 routines. Feature extraction routines are specialized in detect-

ing features of interest. For instance, in vortex detection, the whole algorithm which

includes several filters would be applied to the total velocity field. With the help of

NCAR Graphics Library [3], basic and advanced visualization can be achieved. The

plotting package uses NCAR Graphics’ GKS [1] [3] utilities to help accomplish map-

ping and rendering, that is, the HOPS Fortran routines call corresponding NCAR’s

Fortran subroutines to convert data into a collection of lines, points or icons. Some

visualization techniques, such as contours, iso-surface and volume rendering, are also

easily done by calling NCAR’s routines. Therefore, scalar fields and vector fields in

HOPS data files can be properly visualized.

NCAR Graphics Library

The NCAR Graphics Library [3] is a Fortran and C based software package for sci-

entific visualization which contains a large number of Fortran/C utilities for draw-

ing contours, maps, vectors, streamlines, weather maps, surfaces, histograms, X/Y

plots, annotations, etc. It enables users to apply advanced visualization and analysis

techniques to their data. These techniques can be applied to help users gain new

insights into data from applications in a wide variety of fields. The NCAR graphics

is discipline-independent and easily adapts to new applications and data.
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2.2.5 Feature-Based Visualization

Research on feature-based visualization focuses on providing feasible visualization

techniques that are semi-automatic and require less user time and little a-priori knowl-

edge of the feature locations. A feature is defined in this context as anything contained

in the data set that might be of interest to the user. A feature-based data represen-

tation is a high-level data description able to replace the original representation in a

succinct and meaningful manner [46].

Less complexity, more information content and a good match to the concepts of the

application area, are some of the goals of feature-based methods. By focusing on the

user-defined effects or events, feature-based visualization is intended to improve the

efficiency of the visualization process. Apart from the normal visualization pipeline,

feature-based visualization adds on an automated analysis performed directly on the

data set in question and able to get a set of features that are typically represented as

icons at the location of the feature.

The demand for feature-based techniques has been growing with increasing avail-

ability of simulation data sets. In fluid dynamics, for example, the size of data sets

exploded with the wider adoption of time-dependent simulations, which reflected an

increase in the resulting data of several orders of magnitude over a steady simula-

tion. So far, only a few research groups have been actively engaging in feature-based

visualization research [46] [18] [38] [40] [61] [64].

Examples of a feature-based techniques in oceanography are the extraction of

eddies/gyres (vortices), upwelling and jets from real ocean fields. For visualization

purposes, these features can be represented by different lines and icons either alone or

combined with classical visualization methods. Features can also serve as guides to

classical visualization techniques, an example of which is the placement of streamline

seed points close to a vortex core. Moreover, the high-level data description of the

features can be used for selective visualization. For example, a user can pick a set of

features to be visualized instead of displaying all features found in the data set. The

representation of point and line features does not require many graphic primitives,
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and this makes feature-based techniques well suited for virtual reality environments,

though limiting the geometry to be drawn remains a main concern.

Feature-based visualization could be utilized for adaptive sampling. One goal of

adaptive sampling is to direct measurements for the purpose of providing accurate

and efficient forecasts and for evaluating and further developing relevant and useful

predictive skill metrics. Therefore, adaptive sampling is often applied to regions

bearing phenomena of interest. After the location and size of one feature in the ocean

is detected and visualized, the observational pattern in the next step of adaptive

sampling can be decided upon with some objective criteria. Thus, feature-based

visualization facilitates adaptive sampling and can help minimize the selected error

measure in field forecasts.
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Chapter 3

Vortex Detection

3.1 Vortices in Fluid Flow

Vortices are among the most important features of fluid flows. It is easy to have an

intuitive conception of a vortex, a mental picture of a tornado-like object. However,

dissent remains on the formal definition of vortex.

3.1.1 Definition

The fluid dynamicists have proposed several vortex definitions, but none is without

problems. The generality of such definitions remains unresolved. Among the first

definitions was the one proposed by Lugt[33]:

• “A vortex is the rotating motion of a multitude of material particles around a

common center.”

In addition to its vagueness, this definition lacks the potential to guide practi-

cal algorithms. Targeting this problem, Robinson[45] constructed a more concrete

definition of vortex:

• “A vortex exists when instantaneous streamlines mapped onto a plane normal

to the vortex core exhibit a roughly circular or spiral pattern, when viewed from

a reference frame moving with the center of a vortex core.”
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Such a definition, even though is more concrete, it is self-referential. Moreover, it

is hard to detect the correct reference frame for all types of flows.

Using set theory and differential geometry, Portela [39] developed a set of mathe-

matically rigorous definitions for vortices. Although his 3D definition is not as strong

as the 2D version, the intuition behind his definitions is insightful. According to [39],

a vortex is made up of a central core region surrounded by swirling streamlines. In

this definition, two integral parts, the core and the streamlines, can be identified.

Both are of equal importance and both have to be covered by the vortex algorithms.

In this thesis, both aspects will be discussed.

3.1.2 Classical 2D Vortices

Rankine Vortex

Rankine Vortex [48] takes consideration of the two limit behaviors. The Rankine

Vortex is a simple vortex model, yet there is no mechanism that can produce a

Rankine vortex in the atmosphere or the ocean. The Rankine vortex is often called a

Rankine combined vortex for the reason that it is built from two separate flow fields.

The interior flow field is one that has only a tangential velocity Vθ which increases

from zero along the central axis to a maximum value at a radius r0, which is called

a reference radius. This interior region rotates like a solid body even though it is a

fluid. The outer flow is also purely tangential and begins with its maximum velocity

at radius r0 and the velocity declines inversely with radius. The Rankine vortex is

mathematically described by

Vr = 0 (3.1)

 Vθ = ωr (r ≤ r0)

Vθ = Γ
2πr

= ω
r2
0

r
(r > r0)

(3.2)

where r = radius from the rotation axis (z-axis) (as in Figure 3-1), ω = angular

velocity of any fluid particle within r0, Γ (circulation) is the vortex strength defined
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Figure 3-1: Tangential velocity Vθ in Rankine vortex as a function of distance to the
rotation axis

by Γ =
∫ 2π
0 ωr2 dθ = 2πωr2

0 (the same definition is also used in other vortex models).

The inner velocity distribution of the vortex (r ≤ r0) has constant vorticity 2ω in z

direction and the outer velocity distribution (r > r0) has zero vorticity. The advantage

of the Rankine vortex, which is not a solution of the Navier-Stokes equations, is that

it clarifies the separation between the central region and the potential decay region.

Figure 3-1 on page 49 shows the tangential velocity Vθ of Rankine vortex as a

function of the radius from the vortex core.

Potential Vortex

The potential vortex in 2D can be taken as the outer velocity distribution of Rankine

vortex [48]. Especially, when r0 is made to approach zero and ω is increased to keep

the product ωr2
0 constant, the velocity profile becomes,

Vr = 0 (3.3)

Vθ =
Γ

2πr
= ω

r2
0

r
(3.4)

where, Γ (circulation) is the vortex strength defined by Γ =
∫ 2π
0 ωr2 dθ = 2πωr2

0

and r is the radius from the rotation axis.

So the flow approaches zero when going away from the rotation axis, but the

downside is that the flow speed approaches infinity when moving closer to the ro-
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Figure 3-2: tangential velocity Vθ in potential vortex as a function of distance to the
rotation axis

tation axis. The potential vortex has the marked property that its vorticity is zero

(irrotational) everywhere except at the axis (which is a singularity). Compared to

this, the solid body rotation has a constant non-zero curl. The vorticity of the solid

body rotation is 2ω in z direction.

Figure 3-2 on page 50 shows the velocity Vθ of a potential vortex as a function of

the radius from the rotation axis.

Oseen Vortex

The Oseen vortex is an exact solution of the Navier-Stokes equations [39]. Its velocity

profile is given by,

Vr = 0 (3.5)

Vθ =
Γ

2π
√

4νt

1

η
(1− e−η2

) (3.6)

where η = r/
√

4νt, Γ = vortex strength, t = time, ν = kinematic viscosity.

The Oseen vortex corresponds to the decay of a potential vortex with tangential

velocity Vθ given by:
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Figure 3-3: Tangential velocity Vθ in Oseen vortex as a function of distance to the
rotation axis

Vθ =
Γ

2πr
(3.7)

In essence, the Oseen vortex can be viewed as a model for a potential decay type

of vortex, that is, one that has a central region where the velocity grows with the

radius and an outer region where the velocity decays with the radius, with the limit

behavior shown below:

 r → 0 : Vθ ∝ r

r →∞ : Vθ ∝ 1
r

(3.8)

Figure 3-3 on page 51 shows the tangential velocity Vθ of Oseen vortex as a function

of the radius from the vortex core.

Taylor Vortex

The Taylor vortex is also an exact solution of the Navier-Stokes equation [39]. Its

velocity profile is given by:

Vr = 0 (3.9)
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Figure 3-4: Tangential velocity Vθ in Taylor vortex as a function of distance to the
rotation axis

Vθ = H

√
4νt

νt2
ηe−η2

(3.10)

The Taylor vortex corresponds to the decay of a vortex with a finite amount of

angular momentum (H is proportional to the angular momentum).

Figure 3-4 on page 52 shows the tangential velocity Vθ of Taylor vortex as a

function of the radius from the vortex core.

Other more elaborate models for vortex do exist, however, none is general enough

to be taken as a rigorous definition of a vortex. In most cases, some 2D flow plus

a tiny component in the third direction is employed whereas in reality vortices can

assume a variety of shapes and the vortex axis may not necessarily be a straight line.

3.1.3 Other 3D Vortices

Burgers-Rott Vortex

This vortex has a central axis like the Rankine vortex around which there is a tangen-

tial flow. However, unlike the Rankine vortex, a Burgers-Rott vortex has radial and

vertical flows as well [9] [47]. “Air spirals in toward the axis and then flows upward.

Unlike the Rankine vortex, there is a mechanism for making a Burgers-Rott vortex
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in the atmosphere, as it results from suction at great height above a plane surface. In

the atmosphere a thunderstorm driven by intense convection could provide suction to

draw air toward a point on the ground below and draw the air upward into the cloud.

Therefore, a Burgers-Rott vortex could approximate the air flow beneath the central

region of a large thunderhead. As a model of a real tornado, the Burgers-Rott vortex

suffers from the deficiency of placing the tornado beneath the center of a symmet-

ric updraft. Thunderstorms are not symmetric, and their associated tornados rarely

occur below their central axis.” [2]

The Burgers-Rott vortex is an exact solution to Navier-Stokes equations, and

mathematically assumes the form:

Vr = −ar

Vθ = [Γ/(2πr)](1− e−ar2/2ν)

Vz = 2az

(3.11)

where, Vr, Vθ, Vz are the radial, tangential and vertical components of velocity in

a cylindrical coordinate system, ν = kinematic viscosity, Γ = vortex strength, a =

constant.

Sullivan Vortex

The Sullivan vortex is also an exact solution to the Navier-Stokes equations [56]. It

shares some similarities with the Burgers-Rott vortex, but it is a two-celled vortex.

“It has an inner cell in which air flow descends from above and flows outward to

meet a separate air flow that is converging radially. Both air flows rise at the point

of meeting. What is interesting about the Sullivan vortex is that it is the simplest

vortex that can describe the flow in an intense tornado with a central downdraft.” [2]

The mathematical form of the Sullivan vortex is:

Vr = −ar + 6(ν/r)(1− e−ar2/2ν)

Vθ = Γ
2πr

H(ar2/2ν)/H(∞)

Vz = 2az(1− 3e−ar2/2ν)

(3.12)
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where, Γ = vortex strength, H(x) =
∫ x
0 ef(m) dm, f(t) = (−t+3) ·

∫ t
0(1−e−y)/y dy,

ν = kinematic viscosity, a = constant.

3.2 Point-Based Vortex Detection Methods

One category of vortex detection criteria is point-based [50]. It requires the calcula-

tion of physical quantities at each point in a flow field and then the classification of

the values based on thresholds. The assumption behind this is that characteristics

of the flow patterns in an infinitely small area around a point can be determined by

quantities at that point. The family of point-based methods include pressure magni-

tude [23], vorticity magnitude [22], helicity [50], and various other quantities derived

from the Jacobian ∇v (velocity gradient tensor).

3.2.1 Pressure Magnitude

One can use an area of low pressure to define a vortex region, so the vortex covers

the region where

p ≤ pthreshold (3.13)

The rationale behind this is that a pressure gradient with a minimum of pressure

at the center of the vortex produces the centripetal force of a rotating motion. An

arbitrary threshold is required for this methods, and viscous forces acting on the field

are neglected in this rationale.

3.2.2 Helicity

High helicity can be used as the criterion to define a vortex as the region in which

v · ω
|v| · |ω|

≥ hthreshold (3.14)

where, ω = ∇× v is vorticity.
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This method fails in some simple situations. Since helicities are all zero in 2D

flows, this method is useless for 2D flows. Another counter example is that shear flow

along a curved boundary has high helicity due to shear effects, but vortices may not

exist in it.

3.2.3 Vorticity Magnitude

This commonly used method uses vorticity as the definition of rotating motion and

defines a vortex as a region of high vorticity. According to this method, a vortex is a

region where the vorticity is greater than or equal to some threshold ω:

|∇ × v| ≥ ωthreshold (3.15)

Like the pressure magnitude method, this method demands some arbitrary value

for ωthreshold. In addition, the absence of vorticity does not necessarily guarantee that

there is no vortex, as can be shown in the case of a potential vortex.

3.2.4 Conjugate Pair Eigenvalues

Chong et al. [11] used eigenvalues of the velocity gradient tensor to classify the local

streamline pattern around any point in a flow in a reference frame moving with the

velocity of that point. They proposed that a vortex core is a region with complex

eigenvalues of velocity gradient tensor ∇v. Complex eigenvalues imply that the local

streamline pattern is closed or spiral in a reference frame moving with that point.

Complex eigenvalues are essentially the necessary condition of swirling flows in the

vortex area.

The eigenvalues, λ, of ∇v satisfy the characteristic equation:

λ3 − Pλ2 + Qλ−R = 0 (3.16)

where P ≡ vi,i = 0 (incompressible flow), Q ≡ 1
2
(v2

i,i − vi,jvj,i) = −1
2
vi,jvj,i and

R = Det(vi,j) are the three invariants of ∇v. Complex eigenvalues will occur when
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the discriminant (4) is positive, i.e.,

4 = (
1

3
Q)3 + (

1

2
R)2 > 0 (3.17)

This definition, derived from ∇v, is the Galilean invariant [23].

3.2.5 Negative Eigenvalue λ2

The λ2 method proposed by Jeong and Hussain [23] is a widely used vortex detection

method. First, the local Jacobian J is decomposed into a symmetric part S and its

antisymmetric part Ω:

S =
J + JT

2
(3.18)

Ω =
J − JT

2
(3.19)

where, Jacobian J = ∇v.

Next, the eigenvalues of the matrix S2 + Ω2 are determined. All three eigenvalues

are real because of the symmetric nature of this matrix. The λ2 criterion then defines

a vortex as the region where at least two of the three values are negative, which is

identical to the condition that the second largest eigenvalue is negative λ2 < 0.

3.2.6 Positive Second Invariant of Jacobian

This is based on the second invariant of a 3D matrix mij:

Q = m11m22 −m12m21 + m11m33 −m13m31 + m22m33 −m23m32 (3.20)

A vortex is the region where Q is positive [23]. Another vortex definition pro-

posed [21], required that the second invariant Q of the Jacobian J is positive and

that local pressure is smaller than the surrounding pressure. Jeong and Hussian [23]
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have observed that the second condition is always true if the first one is, thus reducing

the condition to only demanding a positive second invariant Q > 0.

3.2.7 Conclusions on Point-based Methods

The point-based methods have been used in many applications. As long as the vortices

have strong rotation speed around vortex cores and different vortices are sufficiently

isolated from each other, point-based methods can be used and fairly good results

will be achieved. But none of these point-based methods is able to reliably detect all

vortices in large-scale real ocean flows. Here, there are some typical problems:

In some cases, although stronger vortices which have high angular velocity are

usually found, weaker vortices with low angular velocity remain undetected by point-

based methods. In other cases, some flows with seemingly swirling properties are

detected. However, they are not necessarily vortices. They could be shear flows near

the coastlines. Thus, false positives are introduced to the results. Moreover, if two

vortical structures are close together, they will often be lumped together by point-

based techniques, even if they for example have opposite direction of rotation. In fact,

a vortex structure has only one vortex core. If detection methods indicate that two

vortices merge into one, it should be further examined whether this is actually the

case of two vortices simply moving too close to each other to be clearly distinguished,

but still having two different vortex cores.

Last but not least, arbitrary thresholds may need to be used in point-based tech-

niques. Thresholds are based on field values, which make thresholds hard to be

determined. In different cases, threshold values need to vary in order to get good

results. Thus, user interaction is required, and the whole process is not fully auto-

mated. In a nutshell, a vortex is essentially a macroscopic or regional phenomenon,

yet the point values underlying the point-based criteria do not always translate into

regional characteristics.
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Figure 3-5: Streamlines with centers of curvature, adapted from [50].

3.3 Set-Based Vortex Detection Methods

The other category of vortex detection criteria is set-based [49]. The criteria are based

on geometric characteristics of streamlines, as represented by the shape or curvature

of instantaneous streamlines. They build on the intuitive idea of a swirling pattern

of flow around the vortex core in a vortex area.

3.3.1 Curvature Center Density (CCD)

The curvature center methods [27] attempts to detect a vortex in 2D by sampling

the field at many points and often at all grid nodes. For each point sampled, the

center of curvature is determined which is the center of the osculating circle of the

streamline through that point [15]. The center of curvature should accumulate at a

point in vortical regions of the field (as in Figure 3-5(a) on page 58). The samples

taken on this circular streamline all project to the same center of curvature whereas

the centers of curvature in the non-vortical regions of the field are scattered (as in

Figure 3-5(b) on page 58).

Thus, a set of curvature center points can be obtained and then accumulated into

a new grid. The number of curvature centers in each cell forms a new scalar field

called the curvature center density (CCD) field.
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Figure 3-6: The winding angle αw of a piecewise linear curve, adapted from [50].

3.3.2 Winding Angle

Portela’s research [39] also inspired another geometric method for detecting vortex in

2D which elaborated on the intuitive idea of a swirling pattern around a central set of

points. This methods attempts to locate a vortex by selecting and clustering closed

streamlines. A winding-angle criterion simplified by Sadarjoen [49] and a distance

criterion is used in the selection process.

Let Si be a 2D streamline, consisting of points Pi,j and line segments (Pi,j, Pi,j+1),

and let 6 (A, B, C) denote the angle between line segments AB and BC. Then, the

winding angle aω,i of streamline Si is defined as the cumulative change of direction of

the streamline segments (see Figure 3-6 on page 59):

aω,i = ΣN−1
j=1

6 (Pi,j−1, Pi,j, Pi,j+1) (3.21)

Signed angles are used in calculation, with positive rotation for a counterclockwise-

rotating curve and negative rotation for a clockwise-rotating curve. Apparently, if two

conditions are satisfied, namely that aω,i = ±2π and the “final” point in a streamline

lies near its initial point, the streamline is fully closed. In real applications, lower

values, such as 1.9π, 1.8π, may be used to find swirling streamlines which do not

achieve a full revolution.
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The two criteria used by the selection process are: the winding angle of a stream-

line should be very close to 2π, and the distance between the starting and ending

point of the streamline should be relatively small.

3.3.3 Conclusions on Set-Based Methods

The set-based methods begin by covering the full domain with a large number of

streamlines, and then selecting the curves with circular or closed geometry. The

CCD method uses local accumulations of curvature centers which may indicate that

many streamlines are swirling around a cluster of center points. The winding angle

method detects circular patterns of streamlines by checking the cumulative changes

of streamline direction, as represented by the winding angle. The results of set-based

techniques look promising, especially that of the winding angle method. It is very

effective in detecting weak vortices. This is because the set-based criteria are based

on geometric properties of streamlines, they are largely insensitive to the angular

velocity of a vortex. However, both methods are computationally more expensive.

Thresholds are based on geometries for set-based methods while they are based on

field values for point-based methods. Since field values vary considerably from case to

case, it is difficult to determine thresholds. Geometry-based thresholds on the other

hand are a function of mesh properties. Thus, automated vortex detection can be

achieved.

3.4 A Geometric-Based Vortex Core Detection Method

This local, set-based algorithm was originally introduced by Jiang et al. [25] [24].

It is applied to the first step of vortex detection in this study: detecting the vortex

core. Here, it is tested on real large-scale ocean models. In every case, the vortex

core regions detected were consistent with similar results from other vortex detection

methods and validated through human visual inspection.
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Figure 3-7: The four equally spaced direction ranges correspond to direction labeling
of the rectangular cell

3.4.1 Direction Labeling

Direction labelling assigns labels to vectors which point to different direction ranges.

As shown in Figure 3-7 on page 61, one can consider four direction ranges named

A, B, C, D. If a vector points to direction range A, then label A is given to that

vector. Thus, each velocity vector is labelled according to the direction to which

it points. The number of directions can be set as big as desired. But a very high

level of quantization does not improve results much, while the work of checking for

direction-derived properties will increase. In Cartesian grids, four direction ranges is

a good choice since they correspond to the grid’s geometry. In our experiments, a

level of quantization of four is sufficient to produce accurate results.

3.4.2 2D Algorithm

Since velocity vectors around core regions represent certain flow patterns that have

circulatory properties, it is sufficient to examine the immediate neighborhood of a grid

point for the existence of those flow patterns. The concept of the direction spanning

property is introduced here. In the 2D case, the neighboring four vectors of a grid

point are checked. If any three of four vectors point to three different direction ranges,

i.e, any three of four vectors have 3 different labels, then the condition of the direction

spanning property is satisfied and the surrounding flow of the grid point exhibits the

swirling flow property. Therefore, that grid point is a vortex core candidate. In
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Figure 3-8: The two grid points satisfy the direction spanning property.

Figure 3-8 on page 62, the immediate neighboring vectors of points (i+1,j+1) and

(i+1,j+2) point to 3 different direction ranges, so points (i+1,j+1) and (i+1,j+2) are

vortex core candidates.

3.4.3 Post-Processing – Cleanup

The grid points which satisfied the direction-spanning property are vortex core can-

didates since flows around them have swirling property. However, shear flows and

switching flows may also have swirling characteristics. These two kinds of flows do

not exist in a vortex area. So a post-processing step, i.e., cleanup work, is required.

A necessary condition for swirling flows in a vortex area is that the velocity gradi-

ent tensor has a pair of conjugate eigenvalues [23]. During the cleanup process, the

vortex core candidates which do not meet this condition are eliminated. Vortex core

candidates are then filtered and only the real vortex cores remain.

3.4.4 Advantages of this Method

This method is capable of detecting all vortex core candidates because their surround-

ing streamlines must satisfy the direction-spanning property. Then the false positives
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can be removed using the conjugate eigenvalues condition. After the vortex cores

are detected, the detection of full vortex areas also becomes easier. Since an entire

vortex region is made up of a vortex core and its surrounding closed streamlines,

we can check closed streamlines around every vortex core instead of extracting all

streamlines passing through grid points and detecting the closed ones, which makes

the process much more efficient and accurate since the vortex core candidate dataset

is much smaller than the grid point dataset. Detection can be done using the winding

angle method.

3.4.5 Classical Model Results

We use the Rankine vortex model to check the validity of several vortex detection

methods. The velocity profile of Rankine vortex are given by,

Vr = 0 (3.22)

Vθ =

 kr (r ≤ r0)

Γ
2πr

= k
r2
0

r
(r > r0)

(3.23)

Vorticity Magnitude

ω = ωz =
1

r

∂(rVθ)

∂r
− 1

r

∂Vr

∂θ
(3.24)

Therefore,

ωz =

 2k (r ≤ r0)

0 (r > r0)
(3.25)

The flow is circulatory but irrotational outside r0 and has uniform vorticity 2k

inside r0. If α (0 < α ≤ 2k) is used as the threshold of the vorticity magnitude

method, only the forced vortex (r ≤ r0) is detected as a vortex area, while the free

vortex r > r0 is not detected. So the high vorticity magnitude partially fails in this

example.
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Negative Eigenvalue λ2

The velocity gradient in a cylindrical coordinate system is given by,

∇V =

 ∂Vr

∂r
∂Vθ

∂r

1
r

∂Vr

∂θ
− Vθ

r
1
r

∂Vθ

∂θ
+ Vr

r

 (3.26)

Case 1 (r ≤ r0):

∇V =

 0 k

−k 0

 (3.27)

and,

(∇V )T =

 0 −k

k 0

 (3.28)

Therefore,

S =
1

2
(∇V + (∇V )T ) =

 0 0

0 0

 (3.29)

and,

Ω =
1

2
(∇V − (∇V )T ) =

 0 k

−k 0

 (3.30)

Ω2 =

 −k2 0

0 −k2

 (3.31)

Thus,

S2 + Ω2 =

 −k2 0

0 −k2

 (3.32)

Solve the following equation to get eigenvalues.
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∣∣∣∣∣∣∣
−k2 − λ 0

0 −k2 − λ

∣∣∣∣∣∣∣ = 0 (3.33)

The solution is λ1 = λ2 = −k2. Since k 6= 0, both eigenvalues are negative.

Case 2 (r > r0):

∇V =

 0 −kr2
0 · 1

r2

kr2
0 · 1

r2 0

 (3.34)

and,

(∇V )T =

 0 kr2
0 · 1

r2

−kr2
0 · 1

r2 0

 (3.35)

Therefore,

S =
1

2
(∇V + (∇V )T ) =

 0 0

0 0

 (3.36)

and,

Ω =
1

2
(∇V − (∇V )T ) =

 0 −kr2
0 · 1

r2

kr2
0 · 1

r2 0

 (3.37)

Ω2 =

 −(kr2
0 · 1

r2 )
2 0

0 −(kr2
0 · 1

r2 )
2

 (3.38)

Thus,

S2 + Ω2 =

 −(kr2
0 · 1

r2 )
2 0

0 −(kr2
0 · 1

r2 )
2

 (3.39)

Solve the following equation to get eigenvalues.

∣∣∣∣∣∣∣
−(kr2

0 · 1
r2 )

2 − λ 0

0 −(kr2
0 · 1

r2 )
2 − λ

∣∣∣∣∣∣∣ = 0 (3.40)
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The solution is λ1 = λ2 = −(kr2
0 · 1

r2 )
2. Since k 6= 0, both eigenvalues are negative.

Therefore, both the forced vortex (r ≤ r0) and the free vortex (r > r0) are detected.

The negative λ2 method is valid in this example.

Second Invariant of Jacobian

Case 1 (r ≤ r0):

|Ω| = k2 (3.41)

and,

|S| = 0 (3.42)

Thus,

Q =
1

2
(|Ω|2 − |S|2) =

1

2
k4 (3.43)

Since k 6= 0, Q is positive.

Case 2 (r > r0):

|Ω| = (kr2
0 ·

1

r2
)2 (3.44)

and,

|S| = 0 (3.45)

Thus,

Q =
1

2
(|Ω|2 − |S|2) =

1

2
(kr2

0 ·
1

r2
)4 (3.46)

Since k 6= 0, Q is positive.

Therefore, both the forced vortex (r ≤ r0) and the free vortex (r > r0) are

detected. The positive Q method is valid in this example.
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Figure 3-9: Streamlines of Rankine Vortex

Geometric-Based Vortex Core Detection

Streamlines of the Rankine vortex model are shown in Figure 3-9 on page 67. The

only point which satisfies the direction spanning property is the center O. Therefore,

the point O is detected as a vortex core. It is truly the vortex core for the Rankine

vortex model. Thus, the geometric-based vortex core detection method is valid in

this example.

3.4.6 Real Ocean Model Results

Massachusetts Bay

The main attributes of the Massachusetts Bay HOPS dataset from June, 18, 1997

are:

tlat (number of tracer points in the latitude direction) = 118 ;

tlon (number of tracer points in the longitude direction) = 64 ;

vlat (number of velocity points in the latitude direction) = 118 ;

vlon (number of velocity points in the longitude direction) = 64 ;

level (input vertical levels or depths) = 11 ;

outlev (output vertical levels or depths) = 11 ;

time (the number of days since initialization) = 15;

rlngd (transformation centroid longitude) = −70.45o (West 70.45 degree) ;
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rlatd (transformation centroid latitude) = 42.18o (North 42.18 degree) ;

thetad (domain rotation angle) = 38o ;

coord (flag for type of horizontal grid) = 0 (Cartesian (tangent plane) grid) (see

Chapter 1.2.2 for explanations);

The visualization of the HOPS horizontal velocity field in Massachusetts Bay is shown

in Figure 3-10 on page 70. Using the horizontal velocity field, the 2D vorticity and

velocity gradient tensor can be calculated.

The visualization of the HOPS vertical velocity field in Massachusetts Bay is

shown in Figure 3-11 on page 71.

Vortex detection in the Massachusetts Bay using flow fields generated by HOPS

and employing the vorticity magnitude method is shown in Figure 3-12 on page 72.

The minimum value of the vorticity magnitude is 0.0 at point (1, 1), the maximum

value is 2.09170947×103 at point (38, 37), the mean value is 1.26739182×102 and the

standard deviation is 1.574661712× 102. Applying a threshold, we can get a cleaner

picture of boolean values of vorticity. The boolean values of the vorticity magnitude

method using thresholds “mean of vorticity field”, “1.5×mean of vorticity field”,

“2×mean of vorticity field”, and “3×mean of vorticity field” are shown in Figure 3-13

on page 73, Figure 3-14 on page 74, Figure 3-15 on page 75, and Figure 3-16 on

page 76. Although some vortex regions are detected, there are many false positives

in the domain, and the boundaries of the vortex regions are not clear. Moreover,

selecting a good threshold will improve results significantly. The vorticity magnitude

method requires an arbitrary threshold so human interaction is needed.

Vortex detection in the Massachusetts Bay employing the conjugate pair eigenval-

ues method is shown in Figure 3-17 on page 77. Almost all vortex regions are detected,

but still, there are many false positives. Note that the condition of conjugate pair

eigenvalues is a necessary condition for a vortex, but not a sufficient one.

Vortex detection in the Massachusetts Bay employing the negative λ2 method

with thresholds “0”, “-100”, “-500”, “-1000”, and “-5000” are shown in Figure 3-18

on page 78, Figure 3-19 on page 79, Figure 3-20 on page 80, Figure 3-21 on page 81,
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and Figure 3-22 on page 82. The minimum value of λ2 is −6.52877875× 105 at point

(37, 35), the maximum value is 2.49484625 × 106 at point (63, 93), the mean value

is 9.88204980× 103 and the standard deviation is 7.78657266× 104. Although some

vortex regions are detected, there are many false positives in the domain. In addition,

different vortices which are close to each other could not be distinguished. Selecting a

suitable threshold is required in this method. Therefore, it’s not a automated process.

Vortex detection in the Massachusetts Bay employing the positive Q method with

thresholds “0”, “100”, “1000”, “5000”, and “1 × 108” are shown in Figure 3-23 on

page 83, Figure 3-24 on page 84, Figure 3-25 on page 85, Figure 3-26 on page 86,

and Figure 3-27 on page 87. The minimum value of Q is −6.42370109× 1011 at point

(40, 39), the maximum value is 9.99087997× 106 at point (38, 37), the mean value is

2.01903504× 108 and the standard deviation is 1.78935439× 1010. Similar problems

exist as with the result of the negative λ2 method. An arbitrary threshold is required

in the process.

In practice, for the λ2 method and positive Q method, the exact threshold 0 can

not be used because of too much noise.

Figure 3-28 on page 88 shows the result of the geometric-based vortex core de-

tection method without cleanup. Note that all the above methods detect vortices,

whereas the geometric method detects vortex cores. The result before cleanup is

fairly good but there are still some false positives, which are caused by shear flows

and switching flows. We applied conjugate pair eigenvalues (defined as A), negative

λ2 (defined as B), and positive Q (defined as C) criteria and set operations between

their results as cleanup methods. The results are shown in Figure 3-29 on page 89 to

Figure 3-38 on page 98. Since swirling flows in the vortex area must have conjugate

pair eigenvalues in the velocity gradient tensor, the false positives that do not have

this characteristic are filtered in the cleanup work. So the conjugate pair eigenvalues,

which is the necessary condition for a vortex area, can be singly used as the cleanup

method. Our results show that more invloved cleanup filters do not improve the

quality of the result. Eventually, only vortex cores are detected in Figure 3-29 on

page 89. We see that even when two vortex cores are very close to each other, they
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Figure 3-10: The horizontal velocity magnitude in Massachusetts Bay.

are still detected as two different vortex cores.
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Figure 3-11: The vertical velocity magnitude in Massachusetts Bay.
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Figure 3-12: The result of the vorticity magnitude method with superposed velocity
vectors in Massachusetts Bay.
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Figure 3-13: The boolean values of the vorticity magnitude method with the threshold
“mean of vorticity field” with superposed velocity vectors in Massachusetts Bay. The
deeper color shows the vortex area.
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Figure 3-14: The boolean values of the vorticity magnitude method with the threshold
“1.5×mean of vorticity field” with superposed velocity vectors in Massachusetts Bay.
The deeper color shows the vortex area.
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Figure 3-15: The boolean values of the vorticity magnitude method with the threshold
“2×mean of vorticity field” with superposed velocity vectors in Massachusetts Bay.
The deeper color shows the vortex area.
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Figure 3-16: The boolean values of the vorticity magnitude method after the threshold
“3×mean of vorticity field” with superposed velocity vectors in Massachusetts Bay.
The deeper color shows the vortex area.
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Figure 3-17: The result of the conjugate pair eigenvalues method in Massachusetts
Bay. The deeper color shows the vortex area.
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Figure 3-18: The result of the negative λ2 method with the threshold “0” in Mas-
sachusetts Bay. The deeper color shows the vortex area.
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Figure 3-19: The result of the negative λ2 method with the threshold “-100” in
Massachusetts Bay. The deeper color shows the vortex area.

79



Figure 3-20: The result of the negative λ2 method with the threshold “-500” in
Massachusetts Bay. The deeper color shows the vortex area.
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Figure 3-21: The result of the negative λ2 method with the threshold “-1000” in
Massachusetts Bay. The deeper color shows the vortex area.
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Figure 3-22: The result of the negative λ2 method with the threshold “-5000” in
Massachusetts Bay. The deeper color shows the vortex area.
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Figure 3-23: The result of the positive Q method with the threshold “0” in Mas-
sachusetts Bay. The deeper color shows the vortex area.
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Figure 3-24: The result of the positive Q method with the threshold “100” in Mas-
sachusetts Bay. The deeper color shows the vortex area.
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Figure 3-25: The result of the positive Q method with the threshold “1000” in Mas-
sachusetts Bay. The deeper color shows the vortex area.

85



Figure 3-26: The result of the positive Q method with the threshold “5000” in Mas-
sachusetts Bay. The deeper color shows the vortex area.
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Figure 3-27: The result of the positive Q method with the threshold “108” in Mas-
sachusetts Bay. The deeper color shows the vortex area.
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Figure 3-28: The result of the geometric method without cleanup in Massachusetts
Bay.
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Figure 3-29: The result of the geometric method with the cleanup condition “con-
jugate pair eigenvalues” (condition A) in Massachusetts Bay. See next Figure for
selected closeups of A, B, C, D, and E.
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Figure 3-30: The closeups of last Figure.
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Figure 3-31: The result of the geometric method with the cleanup condition “negative
λ2” (condition B) in Massachusetts Bay.
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Figure 3-32: The result of the geometric method with the cleanup condition “positive
Q” (condition C) in Massachusetts Bay.
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Figure 3-33: The result of the geometric method with the cleanup condition “A∩B”
in Massachusetts Bay.
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Figure 3-34: The result of the geometric method with the cleanup condition “A∩C”
in Massachusetts Bay.
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Figure 3-35: The result of the geometric method with the cleanup condition “B ∩C”
in Massachusetts Bay.
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Figure 3-36: The result of the geometric method with the cleanup condition “A∪B∪
C” in Massachusetts Bay.
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Figure 3-37: The result of the geometric method with the cleanup condition “A∩B∩
C” in Massachusetts Bay.
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Figure 3-38: The result of the geometric method with the cleanup condition “A ∩
(B ∪ C)” in Massachusetts Bay.
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Western Mediterranean

The main attributes of the Western Mediterranean HOPS dataset from May 7, 2002

are:

tlat (number of tracer points in the latitude direction) = 114 ;

tlon (number of tracer points in the longitude direction) = 149 ;

vlat (number of velocity points in the latitude direction) = 114 ;

vlon (number of velocity points in the longitude direction) = 149 ;

level (input vertical levels or depths) = 20 ;

outlev (output vertical levels or depths) = 20 ;

time (the number of days since initialization) = 21;

rlngd (transformation centroid longitude) = 10.16338o (East 10.16338 degree) ;

rlatd (transformation centroid latitude) = 42.94479o (North 42.94479 degree) ;

thetad (domain rotation angle) = 0o ;

coord (flag for type of horizontal grid) = 0 (Cartesian (tangent plane) grid) ;

The visualization of the HOPS horizontal velocity field in the Western Mediter-

ranean is shown in Figure 3-39 on page 101.

Vortex detection in the Western Mediterranean using flow fields generated by

HOPS and employing the vorticity magnitude method is shown in Figure 3-40 on

page 102, where the threshold is twice the mean of the vorticity field. Many false

positives are detected in addition to vortex regions. The minimum value of the

vorticity magnitude is 0.0 at point (1, 1), the maximum value is 3.11248486 × 103

at point (41, 105), the mean value is 7.78437653 × 10 and the standard deviation is

1.29923126× 102.

Vortex detection in the Western Mediterranean employing the conjugate pair

eigenvalues method is shown in Figure 3-41 on page 103. Again, all vortices and

some false positives are detected since conjugate eigenvalues are only a necessary

condition for a vortex.
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Vortex detection employing the negative λ2 method is shown in Figure 3-42 on

page 104, where dark blue parts denote detected vortex regions when using the thresh-

old −1000, while red parts denote detected additional vortex regions when using the

theoretical threshold 0. Still, many false positives exist in the domain. In addition, it

is hard to distinguish different vortices. The minimum value of λ2 is−3.02418250×105

at point (36, 64), the maximum value is 1.83720953× 105 at point (53, 9), the mean

value is 6.09442566× 102 and the standard deviation is 5.73457568× 103.

Figure 3-43 on page 105 shows the result of the positive Q method, where dark blue

parts denote detected vortex regions when using the threshold 106, while red parts de-

note detected additional vortex regions when using the threshold 0. Similar problems

exist as in the negative λ2 method. The minimum value of Q is −6.69282611×109 at

point (37, 64), the maximum value is 1.96848943 × 1011 at point (36, 64), the mean

value is 2.44103080× 107 and the standard deviation is 1.58065344× 109.

Figure 3-44 on page 106 shows the result of the geometric-based vortex core detec-

tion method without cleanup, which detects vortex core regions. Some false positives

are detected as well as all vortex regions in the domain.

Figure 3-45 on page 107 shows the result of the geometric-based vortex core de-

tection method with cleanup. False positives are removed by using the conjugate

eigenvalues condition. Also, two vortex cores close to each other are well distin-

guished.

100



Figure 3-39: The HOPS horizontal velocity magnitude and direction field in the
Western Mediterranean.
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Figure 3-40: The Boolean values of the vorticity magnitude with the threshold of
twice the mean of the vorticity field, with superposed velocity vectors in the Western
Mediterranean. The deeper color denotes the vortex area.
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Figure 3-41: The result of the conjugate pair eigenvalues method in the Western
Mediterranean. The deeper color shows the vortex area.
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Figure 3-42: The result of the negative λ2 method with superposed velocity in the
Western Mediterranean.
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Figure 3-43: The result of the positive Q method with superposed velocity in the
Western Mediterranean.
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Figure 3-44: The result of the geometric method without cleanup in the Western
Mediterranean.
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Figure 3-45: The result of the geometric method with cleanup in the Western Mediter-
ranean. See next Figure for closeups of A, B, C and D.
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Figure 3-46: The closeups of last Figure.
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3.4.7 Conclusions on the Vortex Core Detection Method

The intuitive logic behind this method is that swirling flows around a grid point can

be detected by the direction-spanning property of the neighboring vectors around

that point. The vortex core detection method can extract the vortex core regions

individually. Even for two vortex structures very close to each other, the method

can clearly detect two distinct vortex cores. Compared to the set-based method, the

computation is less expensive. Moreover, since it does not require a threshold in

the process of checking the direction-spanning property, human interaction or visual

inspection is eliminated, and automated vortex core detection is achieved.

3.5 Detection of Streamlines and Closed Stream-

lines

3.5.1 Streamline Detection in Flows

Cartesian grids

The computation of a particle path is based on a numerical integration of the ordinary

differential equation.

dx

dt
= v(x, t) (3.47)

where t denotes time, x denotes the particle position and v(x, t) denotes the

velocity field. The initial condition is provided by the starting point x0:

And the solution is a sequence of particle positions (x(t0), x(t1), ...).

A particle tracing algorithm comprises of the following steps [51]. First, a search

is conducted for the cell containing the initial position of the particle. Next the

velocities in the cell corners are interpolated to determine the velocity in this point.

Then, the next position of the particle can be calculated during the integration step,

leading to another new search. The process of interpolation, integration and point

location loops until the particle leaves the grid.
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• Point location

It refers to the process of determining which cell contains a specified point. The

coordinates of a point can be divided into the integer and fractional parts [51]:

x = (x, y, z) ⇒ [i, j, k] + (α, β, γ) (3.48)

where, i, j, k are integers, which are indices, and α, β, γ ∈ [0, 1], which are

offsets.

In some cases, point location in a Cartesian grid is as simple as truncating the

coordinates to their integer parts [i, j, k]. (α, β, γ) are offsets and also need to

be determined [51].

• Interpolation

In order to obtain a value of the velocity field in points other than the grid

points, determining an interpolated value from the nodes surrounding the point

becomes necessary. One way to do this is Inverse Distance Weighting [60] [59].

Let (x0, · · · ,x7) be the coordinates of the eight corner nodes of a hexahedral

cell, and let (v0, · · · ,v7) be the velocities in those nodes. Then, the interpolated

value v in point X is calculated as a weighted average of the corner values:

v = ω0v0 + ω1v1 + · · ·+ ω7v7 (3.49)

The weight of each data point is calculated as a function of the Euclidian dis-

tance between xi and X:

di =‖ xi −X ‖ (3.50)

ωi =

1
(di)2

Σ7
j=0

1
(dj)2

(3.51)
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Figure 3-47: Inverse distance weighting

In a 2D cell consisting of four nodes, the same principle can be applied (see

Figure 3-47 on page 111).

In the case that X is close to a corner node, the distance di would be close

to zero and the value ωi would be very large. So for reasons of floating point

accuracy it is needed to first check whether the distance di is close to zero, in

which case the weight of that corner ωi is set to 1, and the weights of all other

nodes are set to zero.

• Integration

Many integration methods exist in the literature [16], from the simple first-order

Euler scheme to the higher-order methods. Known as a second-order Runge-

Kutta scheme, Heun’s scheme is a widely used method. Starting from position

xn at time t = tn, the position xn+1 at time t = tn+1 is calculated in two steps:

x∗
n+1 = xn +4t · v(xn) (3.52)

xn+1 = xn +4t · 1

2
{v(xn) + v(x∗

n+1)} (3.53)
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Figure 3-48: Transformation between P-space and C-space, adapted from [51].

Curvilinear Grids

In real practice, to handle more complex geometries, many applications use grids

other than Cartesian grids, such as curvilinear grids, also known as structured grids

due to their regular topological structure, as opposed to unstructured grids which are

used in Finite Element Methods.

Although curvilinear grids are applicable to a large variety of geometries, the

trade-off is that numerical procedures are much more complicated in curved grids.

That explains why the curvilinear grid in the physical domain is often internally

transformed to a Cartesian grid in a new domain. The physical domain is called

P-space and the new domain is called computational space or C-space [51]. A simple

Cartesian grid in C-space enables much more efficient calculations.

Similar problems arise in particle tracing in a curvilinear grid, particularly with

point location and interpolation. This suggests the use of a similar procedure in

determining particle paths for visualization purposes as for flow solving. A transfor-

mation is done from physical space to computational space so that the curvilinear

grid becomes a Cartesian grid (as in Figure 3-48 on page 112).

After point location and interpolation is carried out in Cartesian grid as previously

discussed, the positions of the complete path back to the physical domain have to

be transformed in order to be able to visualize it. Still, the use of a Cartesian

computational domain may increase the efficiency of the algorithm.
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An alternative way is to calculate the particle path directly in P-space. This makes

point location and interpolation more complicated, but eliminates the work of grid

transformation. However, in most case this method is less efficient.

3.5.2 Closed Streamline Detection

Essentially, a vortex consists of central vortex core region and surrounding closed

streamlines. After we detected vortex core regions in an ocean domain, the next

work is to detect the neighboring closed streamlines around vortex cores. We use two

methods to detect closed streamlines. The first one is the winding angle method. In

the winding angle method [39], closed streamlines can be recognized by determining

if the winding angle of a streamline has reached a threshold, such as 2π for a full

revolution, and the end point lies near the initial point. We also developed another

method – the “cross”” method to detect closed streamlines. It is simple and efficient

and has both a 2D and a 3D implementation. The Limit cycle method [61] to detect

closed streamlines is also introduced.

Seed Points of Streamlines

In order to detect closed streamlines around every vortex core, the first step is to

determine the seed points of these streamlines, without which the work of detecting

streamlines could not be continued. As shown in Figure 3-49(a) on page 114, there

are two vortex cores O1 and O2 which are already detected in the previous step of

vortex core detection. To find the seed points around vortex core O1, the distances

from the vortex core O1 to the four boundaries and that between two vortex cores

are compared. The shortest distance O1O2 should be selected where seed points are

located. In Figure 3-49(b) on page 114, the line O1B is shorter than O1O2. So O1B is

selected as the place where seed points are located. The underpinning logic is that by

selecting the shortest line, we can detect as many streamlines as possible within the

domain. In contrast, if we select a line other than the one with the shortest distance

as the location of seed points, it is more likely that some streamlines starting from
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Figure 3-49: The shortest distance (red) is the line where seed points are located.

these seed points may exit the domain, and this definitely has to be avoided. Another

advantage is that streamlines in between could still be detected in the case of two

close vortex cores, separating the two vortices clearly. Thus, we can deal with the

problem in point-based vortex detection methods when two close vortices get mixed

up. For every vortex core candidate, a bisection algorithm is applied to the line

where seed points are located to find suitable seed points for the closed streamlines,

minimizing the number of streamlines needed to locate the bounds of a vortex region.

The algorithm is as follows: in the shortest distance O1B (in Figure 3-49(b)), the

center point C1 is selected as the first seed point. If a closed streamline is detected,

then the center point C2 of the line C1B, which is far from the vortex core O1, is

selected as the second seed point; if no closed streamline is detected, then the center

point C2 of the line O1C1, which is close to the vortex core O1, is selected as the

second seed point. Repeat this process until when the distance |CnCn−1| < ε, where

ε is the termination criterion for the bisection method. At this time, if the streamline

starting from the seed point Cn is a closed streamline, then it is also the boundary of

the vortex with the vortex core O1.
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Winding Angle

As described in Section 3.3.2, the winding angle method is very reliable in detecting

closed streamlines. Using the streamline detection method discussed in Section 3.3.2,

a dense set of streamlines in an ocean domain are detected. Then the winding angle

method is used to filter closed streamlines from the larger set of streamlines in the

ocean domain. This process becomes much more efficient with the help of the vortex

core detection method. As the result of the vortex core detection, all vortex cores

in an ocean domain are detected. Then the next step is to detect closed streamlines

around every vortex core. Thus, the number of streamlines that need to be checked

by the winding angle method is much smaller. The combination of central core region

and the swirling streamlines is the entire vortex area.

Limit Cycle

Another method to detect closed streamlines is a Limit Cycle method proposed by

Wischgoll and Scheuermann [61]. According to this method, a streamline approaching

a limit cycle has to reenter cells (Figure 3-50 on page 116). If a real exit can be reached,

the streamline will leave the cell cycle (Figure 3-51 on page 116). If no real exit can be

reached, the streamline will approach a limit cycle (Figure 3-52 on page 117). Their

conclusion is that the closed streamline under detection is actually the limit cycle,

where the initial point of a streamline has zero distance to its end point.

The Limit Cycle algorithm is comprised of two parts. The first part is the detection

of closed streamlines as follows,

1. Streamline integration: From an initial point, calculate a streamline until a cell

cycle is found. Here, cell circle is defined as cells crossed by the streamline have

not changed for the last two turns.

2. Select potential exit: Potential points on each edge in cells of the cell cycle need

to be found. The outflow out of the cell cycle may occur near these points.

These points are identical with the vertices of the edge and points where the

vector field is tangential to the edge.
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Figure 3-50: A streamline approaching a limit cycle has to reenter cells, taken
from [61].

Figure 3-51: If a real exit can be reached, the streamline will leave the cell cycle,
taken from [61].
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Figure 3-52: If no real exit can be reached, the streamline will approach a limit cycle,
taken from [61].

3. Validating real exit: Integrate backward a curve from the potential exit. If this

curve leaves the cell cycle, i.e, diverges from the investigated streamline, then

this exit is a false exit. Otherwise, that is, this backward integration converges

to the investigated streamline, the exit is a real exit.

4. If a real exit can be reached, then the streamline will leave the cell cycle. If no

real exit, the streamline will approach a limit cycle.

The second part of the Limit Cycle method is the determination of the exact

location of closed streamlines. Once a limit cycle is detected, work is continued by

using one edge with which the investigated streamline intersects in the cell cycle. The

edge is then divided into two parts at the midpoint of the edge, and we check which

part gets intersected by the streamline. Then this binary search moves on until one

point of the limit cycle is located. Then a streamline can start from this point, and

get to the whole limit cycle (closed streamline).

This Limit Cycle algorithm is complicated. The whole process is: streamline

integration ⇒ finding cell cycle ⇒ finding limit cycle ⇒ locate limit cycle. In fact,
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this method is more strict than the winding angle method in terms of detecting

closed streamlines. Only streamlines which approach the limit cycle will be detected

as closed streamlines. Also, it needs to check every streamline in a domain in order

to find all closed streamlines. So it is computationally expensive. Moreover, cell cycle

depends on the size of grids. The method requires relatively fine grids. In a nutshell,

this method is good only for checking whether one of a few streamlines in one data

field are closed streamlines or not.

3.6 A Novel Cross Method to Detect Closed Stream-

lines

We developed a new method to detect closed streamlines in a large-scale real ocean

domain. We have named it the “cross” method since a closed streamline must cross

some ranges and axis. Regardless of shape, size and direction of streamline, the above

property is always observed. Another reason to name it the “cross” method is that in

practice, four ranges and four semi-axis are most frequently used in this new method,

and the two axes form a “cross”. Examples prove that the method can get as good

results as the winding angle method, while it involves much less computation work

than the winding angle method.

3.6.1 Cross Property

In a vortex core, four axes can be drawn parallel to domain boundaries dividing the

domain into four ranges (as in Figure 3-53 on page 119). A streamline starting from

a point on one axis around this vortex core is studied. Some possible shapes of the

streamline are as in Figure 3-54 on page 120: it could be located only in one range

(A), or expand to two ranges (B), or transcend three ranges (C) or pass through all

four ranges (D). None of the streamlines A, B and C could be recognized as closed

streamlines, though some of them may bear some kinds of swirling property. Only

situation (D) satisfies the “cross” property. We can simplify the condition of “cross”
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Figure 3-53: In a vortex core, four axes can be drawn which are parallel to domain
boundaries.

property as the following: if a streamline starts from negative x axis and proceeds

clockwise, then it has to pass through positive y axis, positive x axis, and then negative

y axis again in order to satisfy the “cross” property.

Note that if there is only one vortex core O in an area shown as in Figure 3-55

on page 121, the ”closed” streamline E could not exist outside vortex core O. The

reason is that according to the definition of vortex, vortex area consists of the central

vortex core and the closed streamlines surrounding it. So ”closed” streamlines that

”bypass” the core are eliminated from consideration. In fact, the streamline E must

enclose another vortex core in the same domain.

3.6.2 Distance Criterion

Satisfying the “cross” property does not guarantee a streamline to be closed. Another

necessary condition here is that the end point of a streamline must lie near the initial

point. In Figure 3-56 on page 121, streamline A is a closed streamline, but streamline

B could not be recognized as a closed streamline. In practice, the position of end

point do not need to be the same as that of initial point. So far as they are close

to each other, we can recognize the streamline as the closed streamline. Therefore,

a distance criterion is introduced here. An appropriate threshold for the distance

between initial point of a streamline and its end point needs to be set. The distance
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Figure 3-54: Four possible situations of a streamline.
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Figure 3-55: The streamline E could not “bypass” vortex core O if O is the only
vortex core in the region.

Figure 3-56: Streamline A is a closed streamline but streamline B is not.

criterion can be expressed as,

|~Pend − ~Pstart| < dthreshold (3.54)

where, ~Pend and ~Pstart refer to end point position and start point position.

3.6.3 2D Algorithm

The 2D algorithm is really simple. The “cross” property, combined with the distance

criterion, determines if a streamline is a closed streamline around a vortex core. In

2D applications, we notice that if the “cross” property is satisfied for a streamline
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Figure 3-57: A superposition of a source or sink and a vortex is not a perfect vortex.

but the distance criterion are not satisfied, the streamline is still not closed, which

means that the streamline is not in the vortex area. As in Figure 3-57 on page 122,

streamline C is not in a 2D vortex area. In fluid flow, it could be recognized as a

superposition of a source or a sink and a vortex. Although it has some kind of swirling

property, it is not the same as vortex and thus not included in the content of vortex

detection. However, in 3D application, streamline C may be in a vortex region. For

example, Figure 3-58 on page 123 shows an upwelling in a 3D confined vortex. In top

view, the vortex structure is the same as in Figure 3-57 on page 122, which is a 3D

vortex. In fact, if vertical velocity exceeds a threshold in some regions, we can relax

the distance criterion for streamline detection. The 3D case will be further studied

in the 3D feature extraction and visualization for HOPS datasets.

3.6.4 3D Algorithm

Up to now, the “cross” method has only been implemented in 2D. But there is an

alternative way to apply it in 3D. The idea is adapted from Portela’s [39] winding

angle method for 3D: surrounding streamlines could be projected to a plane. This

plane is referred to as the swirl plane since, as pointed out by [45] [39], instanta-

neous streamlines projected onto this plane exhibit a swirling pattern. Then the 2D

algorithm can be applied to the projected streamlines on the swirl plane. Then the
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Figure 3-58: Upwelling in a confined vortex, taken from [3].

Figure 3-59: Swirling plane and core direction in 3D vortex core region, adapted from
[25].

task is simplified into finding the normal vector of the swirling plane, which is called

the vortex core direction since both of them should go though the vortex core (as in

Figure 3-59 on page 123).

There are several existing methods to compute the core direction, all of which are

related with the velocity gradient tensor. They range from the least computationally

intensive, i.e., the vorticity vector [7] [54], to the most computationally intensive,i.e.,

the real eigenvector [55] [19]. It should be noted that [55] [11] have shown the

latter to be the correct core direction, and others are only approximations to the

core direction. Once the core direction is found, the swirling plane which is normal
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Figure 3-60: Quantization of range and axis.

to the core direction is generated. Then the surrounding swirling streamlines could

be projected to that plane. After that, the 2D algorithm can be applied. If the 2D

algorithm detects that the “cross” property and the distance criterion are satisfied,

then the detected streamline is a closed streamline.

To sum up, the 3D algorithm can be conducted in 3 steps: First, computing the

core direction and swirl plane; second, projecting neighboring streamlines onto a swirl

plane which is normal to the core direction; and third, applying the 2D algorithm to

the projected streamlines.

3.6.5 Quantization of Range and Axis

Quantization of range and axis refers to the number of possible ranges and axes in

which a streamline is checked. It needs to be predetermined in this method. In

different applications, the regular grid may be different. It could be a cartesian grid,

which has four ranges with four semi-axes for every grid point, or a complicated finite

element grid, which has n ranges with n semi-axes (as in Figure 3-60 on page 124)

for every grid point. When we check the “cross” property, the accuracy is actually

the same for four ranges with four semi-axes or more ranges with more semi-axes.

But an exponential increase will occur in computation when checking for the “cross”

property of streamlines. Since we can always map data from the physical space to

the computational space, four ranges with four axes are selected as a Cartesian grid

is what is used in computational space for HOPS.
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3.6.6 Classical Model Results

We still use the Rankine vortex model to check the validity of the winding angle

method and the “cross” method. Streamlines of Rankine vortex model are shown

in Figure 3-9 on page 67. Every streamline makes a full revolution and satisfies the

distance criterion since the end point is in the same position of the initial point.

Therefore, winding angle method detects all streamlines as closed streamlines. Also,

the “cross” property is satisfied for every streamline in Rankine vortex. Therefore,

our “cross” method detects all streamlines as closed streamlines. The whole Rankine

vortex, which is the combination of Rankine vortex core O and all streamlines, is a

vortex area. Thus, both the winding angle method and the “cross” method are valid

in this example.

3.6.7 Real Ocean Model Results

When we use the winding angle or the “cross” method to detect closed streamlines

around vortex cores in Massachusetts Bay, no closed streamline is detected. Although

some streamlines around vortex cores show some swirling property, they don’t satisfy

the distance criterion. However, if vertical velocity (shown in Figure 3-11 on page 71)

exceeds a threshold in some regions, we can relax the distance criterion for streamline

detection. Since vertical velocities increase along the vertical direction of vortex cores,

it’s quite possible that both the sink and the vortex exist in the vortex area, which

could form 3D vortices. This issue will be further studied in 3D results of feature

extraction and visualization for HOPS datasets.

The result of the winding angle method applied to a flow field of the Western

Mediterranean produced by HOPS is shown in Figure 3-61 on page 126. The closed

streamlines around the vortex cores are detected. The combination of vortex core

regions and the surrounding closed streamline regions are entire vortex areas. Fig-

ure 3-62 on page 127 shows the result of the “cross” method in the Western Mediter-

ranean. The “cross” method gets very similar result with the winding angle method.

Both methods get fairly good results. Figure 3-63 on page 128 shows the attribute
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Figure 3-61: The result of winding angle method in the Western Mediterranean.

set of vortex direction in the Western Mediterranean, where dark blue parts denote

clockwise rotating vortices, and red parts denote counter-clockwise rotating vortices.
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Figure 3-62: The result of the “cross” method in the Western Mediterranean.
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Figure 3-63: The result of the “cross” method in the Western Mediterranean.
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3.6.8 Complexity Analysis

The cost of point-based methods is independent of the number of vortex cores and

scales with the number of grid points as O(N). The cost of the “cross” method and

the winding angle method is independent of the number of grid points and scales

with the number of vortex core candicates (NC) as O(NC). For every vortex core

candidate, a bisection algorithm is used to find suitable seed points for the closed

streamlines, minimizing the number of streamlines needed to find the bounds of a

vortex region. So the total time for detecting closed streamlines Ttot is

Ttot = O(N) +
NC∑
j=1

CBj (3.55)

where, O(N) denotes the cost for transform between physical space and computa-

tional space. CBj denotes the time of the bisection algorithm for vortex core candidate

j. The cost per vortex core candidate CBj should scale as O(log2 ∆j) where ∆j is the

minimum distance between a given candidate j and the nearest boundary or other

vortex core. Therefore, CBj can be expressed as

CBj =

dlog2
∆j
ε
e∑

i=1

Cj
Si (3.56)

where, ε > 0 is the termination criterion for the bisection method. Cj
Si denotes

the time for extracting one streamline. In streamline extraction, the Inverse Distance

Weighting algorithm using the four corners of a cell is used as the interpolation method

and a second-order Runge-Kutta scheme (Heun’s scheme) is used as the integration

method. So Cj
Si can be expressed as,

Cj
Si = (CI + CR + CC) · τ j

i

δt
(3.57)

where, CI denotes the time per step of the Inverse Distance Weighting algorithm,

CR denotes the time per step of Heun’s scheme and CC denotes the time for checking

for the “cross” or winding angle property per step. They all have approximately

constant cost per step. τ j
i denotes the time needed for a streamline i to complete
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a loop, effectively stagnate or exit the domain. τ j
i is different from streamline to

streamline for the same vortex core candidate as well as for different vortex core

candidates. δt denotes the step size.

Combining the above three formulae, we have:

Ttot = O(N) +
NC∑
j=1

dlog2
∆j
ε
e∑

i=1

(CI + CR + CC) · τ j
i

δt
(3.58)

Factoring out the constant terms,

Ttot = O(N) +
(CI + CR + CC)

δt
·

NC∑
j=1

dlog2
∆j
ε
e∑

i=1

τ j
i (3.59)

For a characteristic ∆j, say ∆ch and a characteristic τ j
i , say τ ch, in the “cross”

and the winding angle methods, the total time for detecting closed streamlines Ttot

is expected to scale as O(N + NC ·log2∆ch·τch

δt
). Moreover, the “cross” method uses the

simple “cross” property to detect closed streamlines, while the winding angle method

uses the atan() function in order to calculate every αi, which is computationally more

expensive. Therefore, the winding angle method is expected to take more time than

the “cross” method as CC cross < CC winding, the difference becoming considerable for

small δt and large NC .

Timings

The timing tests were performed on a PC which has two Athlon MP@1.4GHz pro-

cessors, 512MB memory, running under the Red Hat 7.2 Linux. However, software

used only one processor. We did three tests for each method applied in Massachusetts

Bay and in the Western Mediterranean respectively. The mean values of the tests

are listed in Table 3.1 on page 131, where user time I is for Massachusetts Bay and

user time II is for the Western Mediterranean. Note that the “cross” method and the

winding angle method need to detect streamlines, which involves interpolation and

integration. We were able to get satisfactory results with an integration step size of

δt = 0.1. It is reasonable that these two methods take more time than other methods.
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Table 3.1: Timings of vortex detection methods.
user time I user time II
(seconds) (seconds)

vortex core detection 0.00195 0.00390
cross method 1.13281 2.08984
winding angle 1.21132 2.32812

positive Q 0.00195 0.00390
negative λ2 0.00390 0.00585

conjugate eigenvalues 0.00195 0.00390
vorticity magnitude 0.00195 0.00195

However, both methods produce much more accurate results than other methods in

our ocean models. The “cross” method uses less time than the winding angle method

in order to get results of similar accuracy.

3.6.9 Conclusion on the “Cross” Method

We have presented a “cross” method to detect closed streamlines in the vortex area.

The algorithm is both simple and efficient. We can conclude with some certainty

whether or not a streamline around a vortex core is a closed streamline and belongs

to the vortex area by examining its “cross” property and distance criterion. We have

tested our algorithms on real large-scale ocean models. In every case, the vortex

regions including the vortex core and the surrounding closed streamlines detected by

our algorithms either concurred with similar results from other methods, such as the

winding angle method, or were validated through human visual inspection. While

the “cross” method can get as good results as the winding angle method, it requires

less computational work which can also be used for the second part.

Our vortex detection method, unlike many other methods, divides the work into

two steps. First, detecting vortex core regions; and second, detecting closed stream-

lines around vortex core regions. According to Portela’s [39] work, a vortex is made up

of a central core region surrounded by swirling streamlines. So, both parts, the core

and the streamlines, are integral parts of a vortex, their combination making an entire

vortex area. This strategy has many merits. The first part, detecting vortex cores,
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is not computationally expensive as explained in the algorithm; for the second part,

detecting surrounding closed streamlines, instead of checking all the streamlines in an

ocean domain, only those streamlines in the neighborhoods of vortex cores need to be

checked. Moreover, results can not only show vortex areas, but also clearly show the

vortex core regions, which could be important in some oceanographic applications.

Finally, the method has both 2D and 3D implementations.
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Chapter 4

Detection of Upwelling

Upwelling is a process by which cold water is brought up from the depths of the

ocean. In the USA, along the California and Oregon states, wind from the northwest

pulls warmer surface water away from shore, and cold water moves up to take its

place [5]. The reason the wind does not just push that water on down south has

to do with physics, friction in particular, and the Coriolis effect, which combine

into a process known as Ekman transport. Cold water appears off the shore from

about April to September. Fog results when cold air comes in contact with the

moist warm air flowing off the land. But fog is only one aspect of the upwelling

phenomenon. That cold water also brings nutrients, nourishing the very bottom of

the food web: phytoplankton and zooplankton. And plankton, in turn, supports

larger marine creatures. When the winds come and push the warm water away from

shore, the cold water rising from the depths brings those nutrients to the surface. The

plant life thrives - plankton and all the other seaweeds. As they convert light and

nutrients into food and oxygen, they manufacture most of the organic compounds

required by marine animals: zooplankton first, which are eaten by fish, which are

eaten by larger fish and birds and marine mammals. Last but not least, the oxygen

given off by the marine plants benefits the land animals as well.

The reason why upwelling occurs has to do with the Ekman transport [13] [5]. The

flow of most surface currents in the ocean is driven by wind. When wind blows over

water, the surface of that water is not pushed directly in front of the wind, but moves
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Figure 4-1: Coastal upwelling

at about 45 degrees to the right of the wind’s motion in the Northern Hemisphere, or

to the left in the Southern Hemisphere, thanks to the Coriolis force, an effect of the

rotation of the earth. As one descends in the water, the direction of flow continues

to be deflected rightward (or leftward), until ultimately a three-dimensional spiral is

formed vertically in the water. The net transport of water, as explained by the Ekman

transport, is at an angle of roughly 90 degrees to the direction of the wind. In short,

water, to a depth of a few hundred meters, is pulled directly off the coast - leaving

room for deep water to rise and replace the displaced water. Upwelling is generally

associated with strong cold currents. The diagrams of two typical upwelling, coastal

upwelling and equator upwelling, are shown in Figure 4-1 on page 134 and Figure 4-2

on page 135.

4.1 Algorithm on Detecting Upwelling

Judging from the definition, upwelling is a process by which cold water is brought

up from the depths of the ocean, which prompts the intuitive thinking to detect

upwelling. We can integrate vertical velocity from bottom to top at every grid point
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Figure 4-2: Equator upwelling

along a vertical line so we will get upwelling magnitude at that grid point on horizontal

plane. In HOPS system, instead of tracer points, we use velocity points as grid points

because vertical velocity is located at every velocity points.

We have used the trapezoidal rule and Simpson’s rule to do vertical velocity inte-

gration. Simpson’s rule has higher precision since the trapezoidal rule gives the exact

value of the integral for linear polynomials, whereas the Simpson’s rule gives the ex-

act value of the integral for polynomials of degree three or less. After integration, we

can get the upwelling magnitude at every grid point on the horizontal plane. Then

a threshold is needed to determine if every grid point is in upwelling area or not. If

the following condition is satisfied, that grid point is in upwelling area.

Vpoint ≥ Vthreshold (4.1)

where, Vpoint is upwelling magnitude at a grid point and Vthreshold is a threshold.

Finally, the grid points that are in the upwelling area need to be classified together
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and visualized as in the case of the vortex area. We can summarize the algorithm of

detecting upwelling into three steps: First, integrating vertical velocity from bottom

to top at every grid point along a vertical line; second, comparing upwelling magnitude

at every grid point on a horizontal plane with the upwelling threshold; and third,

clustering grid point in the upwelling area and visualizing them.

4.2 Real Ocean Model Results

Figure 4-3 on page 137 shows the the result of Nowcast (Jun, 17, 1997) in Mas-

sachusettes Bay. The green part represents upwelling area. The threshold here is 5

m/s. The integrated vertical velocity in green part is bigger than the value of thresh-

old, which indicates that there is greater possibility of upwelling in that region than in

other region. The different threshold values could be defined in order to get different

orders of intensity of upwelling. Figure 4-4 on page 138 shows the result of three days

Forecast (Jun, 20, 1997) in Massachusettes Bay. The green part represents upwelling

area.
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Figure 4-3: Upwelling in Massachusetts Bay.
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Figure 4-4: Upwelling in Massachusetts Bay.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis, feature extraction and scientific visualization methods are discussed.

The approaches for detection of two typical oceanographic features, vortex, upwelling,

are presented. In vortex detection, the algorithm consists of two parts. The first part

is vortex core detection. A geometry-based vortex core detection method is used

to detect vortex cores. The second part is closed streamline detection. A novel

cross method is used to detect closed streamlines around vortex cores. Finally, the

combinations of vortex core regions and their surrounding closed streamline regions

form the entire vortex regions. In upwelling detection, the algorithm of integrating

vertical velocity from the bottom to the top in the ocean is used. These detection

algorithms have been applied to real large-scale ocean models. In every case, vortices

or upwelling detected by our algorithms either concurred with similar results from

other methods, such as the winding angle method, or were validated through human

visual inspection.

As a result, feature-based visualization could be served for adaptive sampling in

the Poseidon project. It will facilitate manual adaptive sampling and eventually could

be used to help automate adaptive sampling.
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5.2 Future Work

Future work can be focused on the following areas,

1. The 3D feature extraction and visualization for HOPS datasets. The related

work can be seen in [20].

2. The introduction of iconic representation for combined visualizations of features

and other quantities.

3. Visualizing errors and uncertainty in feature extraction and visualization. The

related work can be seen in [26].

We would like to introduce the above in the context of a more modern visualiza-

tion framework (IBM OpenDX [6] [10]), which has a better user interface and more

powerful visualization functions. Using OpenDX Java Explorer (applet-based tool),

the visualization programs can be accessed through the web.
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