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Abstract—This paper explains an application scenario of col- from surface vehicle can be used for localization, there is
laborative multi-vehicle simultaneous localization and mapping still a possibility that due to changing atmospheric anddfiel
algorithm (CSLAM) in a marine environment using autonomous ., itions, GPS measurements are unavailable or inaecurat

surface crafts (ASCs) in order to validate its performance.The Wi ¢ th bl th h loitati
motivation behind this is that a team of ASCs can explore a € propose to overcome these probiems through expionation

marine environment more efficiently and reliably than a sinde Of artificial and/or naturally occurring features in the oateng
ASC. However use of multiple ASCs poses additional scaling environment for collaborative mapping and localization of
problems such as inter-vehicle map fusion, and data assotian the vehicles. We use the well known simultaneous localiza-
which needs to be addressed in order to be viable for various 44 and mapping (SLAM) [1][2][3] framework as a basis
types of missions. In this paper we first demonstrate the stepof - L .

extending the single vehicle extended kalman filter based rauil- for collaborative Iocal_lzatlon and m_aPP'_”g (CSLAM) of the
taneous localization and mapping (EKF-SLAM) approach to tre  ASCs. The approach involves each individual ASC, over small
multi-vehicle case. Performance of the algorithm is first esluated time/space scales, performing SLAM independently, and at
using simulations and then using real data extracted from amal  specified times fusing these independent information (nmap a
sea trials conducted in the littoral waters of Singapore (Set locations) to build an overall global map whilst improviragh

Puah) using two ASCs. GPS data is used to assess the accurac hicle’ it timat Combining inf ti .
of localization and feature estimations of CSLAM algorithm. The ehicle’s position estimates. Combining information aixel

improvements that can be achieved by using multiple autonoous ~ from multiple ASCs is a challenging task due to the com-
vehicles in oceanic environments are also discussed. pounding positional errors of individual ASCs and the vagyi

uncertainties and noise characteristics of the sensors.

This paper is organized as follows. In Section Il we describe

Autonomous surface crafts (ASCs) are making a significatite related work that lead to multi-vehicle SLAM and basic
impact in ocean applications, including, search and regmr¢  building blocks of CSLAM. In Section Ill we briefly describe
and harbor surveillance, hydrographic exploration etceseh the probabilistic building blocks of CSLAM algorithm and
tasks are not easily accomplished using single ASCs dueto How to extend those building blocks to solve multi-vehicle
sheer complexity and extent of the environment in additmon SLAM problem. In Section IV experimental results are pre-
the problem itself. As such researchers are focusing more sented and discussed with simulations and real data, while
using multiple ASCs to collaboratively achieve the compleSection V concludes the paper.
missions. Having many ASCs may not only provide additional
performance gains in terms of speed and accuracy, but also
heterogeneity which can be exploited to achieve bettedteesu In order to use autonomous robots in unknown environments
cost effectively. for various exploration and other missions, there are twaol ki

For cost effective utilization of ASCs in various mission®f information that are most valuable - the map of the unknown
it's essential for ASCs to localize themselves in possibnvironment and the position of the robot at any moment with
unknown and unstructured marine environments in which thegspect to the map. These two types of information can be
are deployed. For example if it's a hydrographic survey iobtained concurrently by solving a single problem, commonl
shallow waters, multiple ASCs might be deployed to collabkknown as the simultaneous localization and mapping (SLAM)
oratively scan a marine environment using multi-beam sonaroblem. In essence SLAM is the process in which the robots
scanners for extracting features and objects on the sea ®dloring the environment incrementally build a map while
The features that are extracted should be combined weéhtimating its own position with respect to this map.
accurate positional information in order to build accurasgps The first stochastic solution to SLAM problem was due
to be used for further examination. Even though GPS data Smith et al. [4]. Since then, many developments have

I. INTRODUCTION

II. RELATED WORK



taken place in SLAM. It has how come to a mature stage so
that, practical implementations of SLAM are quite common
place. But there are other issues of using SLAM in real
world applications. For example most of the time, the robots

may need to be operated in large environments. For example '
mapping a large marine environment using a single ASC is
impractical. In such situations it is necessary to depleyrte ;

of robots to accomplish the tasks in a collaborative manner.

Fenwick et al. presented one of the first algorithms on col-
laborative localization and mapping by extending the atass
single vehicle SLAM implementation to multiple vehicleg.[5
AlthO_UQh this m?_thOdOIOQ_y could expl0|t t_he hEterogeneﬁy Fig. 1. Two robots start mapping independently, with respedheir local
sensing capabilities and incorporate vehicle to vehiclgeob frames of referenceF; refers to the global reference frame whitg,, and
vations for improved accuracy, it doesn’t seem to be scaladiz. refers to the local reference frame of the two robots. Blaekssin the

. . . local frames of reference correspond to the features mabpezhch vehicle

and suitable for mgpplng larger a_reas with larger num_bgrfd the red ones correspond to the overlapping features.
of autonomous vehicles, due to higher network bandwidth
requirements and rapidly increasing computational resour
requirements. Thrun et al. presented a multi-robot SLAM I1l. M ULTI-VEHICLE SLAM
algorithm based on the sparse extended information fil&rs [
which enables a team of robots to build a global map from lo- Dec_o;_related ;atl(J:rESI():f Ioca_ld sulb-matas dar|1d de]!aye'sl ‘;'t?‘ta
cal sub-maps of individual robots even if their relativertiay association made an ideal methodology for Mufti-

locations are unknown and landmarks are ambiguous. ScaYS—h'Cle SLAM. The collaborating vehicles perform SLAM

bility was accomplished by alignment of the local maps into |Qdependent of each other and produce local sub-maps by

single global map using a tree-based algorithm for seaqgchiHSing the features a\(ai_lable in their vicinity. Thesg sukpeq
"similar-looking” local landmark configurations, pairedtiva alr(?bff:ljlsri(i\m:(s) :Zi;ﬁf:g%?f?;;?g&?%? C01n?:;enti§g]rig;|
hill climbing algorithm. Howard et al. developed a multio@t ge resentallation of this scenario ge. Fg- P
SLAM algorithm based on manifold .representatio_n [71, whicH Fl)n order to demonsirate thié approach, lets consider the
has the key advantage of self-consistency meaning it d'oescna’lse of two robots collaboratively perforn’ﬂng SLAM in an
suffer from "cross-over” exhibited in planar maps duringpo . .

._unknown environment (Fig. 1). Both of the robots, start from
clos_u e Howard etal. have also proposed @ Rao-BchkwellllthO arbitrary Iocations(angd c)ontinue to map with respect to
particle filter (RBPF) based multi-robot SLAM algorithm [8] ir frame of reference. The origins of both robots with
which although has the advantage of faster mapping, doe '

: : respect to the global reference frame are stored for later us
take any advantage of overlapping features. Further iessiff nse the decigion is made to fuse the local maps into l:he
from the curse of dimensionality, demanding higher memo§ . .

- ; ; . lobal map, the local sub-maps are first transformed into the
requirements and computational time due to duplicate featu lobal frarge of reference Datpa association is then perarm
Moreover, it leads to filter divergence in the case of no%etween features in the .global map and local sutr))-maps o
comparable speeds of robots. : ) . Co

P b o ~identify common (over lapping) features (red colored in.Fig

Stefan et al. proposed a scalable and efficient solution {§ These common or duplicate features are used as cotstrain
the multi-robot SLAM problem [9] by extending their origina o optain improved map and vehicle position estimates. rAfte
work on constrained local sub-map filter (CLSF) [10][11]yemoving the duplicate features from these updated lodal su
The key concept of CLSF is that the independent local SUraps, they are fused into the global map, after which the
maps not only facilitated improved data association bub algopots can continue mapping again. The formulation of CLSF
pro_wded s_|gn|f|cant_perfo_rmance gains due to periodic M@Yased Multi-Vehicle SLAM [9] approach is briefly discussed
fusion. This made it an ideal approach to solve the multigigw.
vehicle SLAM problem. In the CLSF approach, instead of gyppose the robots are at locatioin estimaftes’, (k — 1)
fusing every feature observation directly into the globa@pm 5pg G4t (k — 1) and the map of the feature estimates is
a vehicle relies on the local sub-map from features observggnoted by~ (k — 1) with respect to the global coordinate
in its vicinity. These independently developed sub-mafes atame ;. The superscrip@ indicates that the estimates are

merged in to the global map periodically by appropriately;ih respect to the global reference frame. The composite st
formulating constraints between two maps by identifyingactor is given by,

common features from overlapped areas.

Gat (L _
In this paper, we describe an application scenario of this 4t — G%E}EZ B B 1)
CLSF based multi-vehicle CSLAM algorithm using ASCs in a G::;f(k 1)

an ocean environment. Section Ill, provides the theorktica
foundation for CLSF based multi-vehicle CSLAM. The covariance matrix of the state with respect to the frame



Fy is given by, As can be observed, the covariance matrix of the com-
bined state vector is block diagonal, due to the decormtlate
(k—1) sub-mapping approach. Now the combined state vector is

Gpt (k—1) ¢PL (k—1) CPF
i ( ) 1oz ) transformed into the global reference frame, by a suitable

vlm

Pr= | OPhp(k—1) Pk —1) OPg,(k—1) transformation matrix
Pk =1) GPLL(k—1) “Pl.(k-1) '
2
At this point, the decision is made by both robots to Gt (k) =Ta(k).a}, (k) (12)

build independent sub-maps and perform SLAM within their

sensors’ field of view. First, two new coordinates framEs, The corresponding transformed covariance matrix is given b

and Fr,,, are defined centered at the current vehicle estimates

and then, each vehicle initializes a sub-map at the newrgrigi Gt + T

with no position uncertainity, and continue t% perform SLAI\% Piom (k) = VIa(k). P, (k). VTG (k) (12)

At some later time, both vehicles decide to combine the local T . . .
Now data association is performed in order to identify

sub-maps into the global map. Now the combined state VeCEOJpIicate (overlapping) features present in local sub

is given by, global map. These duplicate features are treated as constra
G it (k) and a constraint_s minimization approach is used to recover a
it (k)= | Lt (k) (3) more robulst estimates fo_r combined state vector and covari-
La g+ () ance matrix. The constraints can be written in the form,
with, C.C3 (k) =b. (13)
“iy, (k) . . o
Gitk)y=| © Aer(k) (4) This is solv_ed using linear constraint minimization appioa
Gt (k) [12] to obtain a better estimation of the combined state
vector and covariance matrix. Now a suitable transfornmatio
Bige (k) { Ligt (k) } (5) is applied to remove duplicate features. Standard congosit
Ligt (k) state vector and covariance matrix for Multi-Vehicle SLAM i
recovered by applying another suitable transformation.
L A
vt = | iy | ©)
2y, () IV. RESULTS

where the subscript 'ism’ stands for independent sub-ma[%\s,
which is an aggregated state vector that combines both com-
posite state vector (which contains global vehicle posiésti- Simulations were conducted to verify the utility, feadtigil
mates and global feature estimates) and decorrelateddtatal and performance gains of the Multi-Vehicle SLAM algorithm.
vectors (vehicle position estimation and feature estiomsli Two identical vehicles having same noise parameters and
produced by individual vehicles performing SLAM. Vehiclesensing capabilities were used in the simulations. Theclehi
state estimation and feature estimations are giveﬁilﬁz (k) were driven on two overlapping trajectories while perfargi
andZig;} (k) with respect to the frame of referenég,. The online Multi-Vehicle SLAM. The estimated trajectories afth
covariance matrix of the combined state vector is given by,vehicles are shown in Fig. 2, while Fig. 3 shows the vehicle

position estimation error in X direction. The norms of vééic

Smulations

G pt(k) 0 0 position covariances are shown in Fig. 4. A saw tooth like
P (k) = 0 L1 p (k) 0 @) coyariance norm change can be observed due to the periodic
0 0 L2 p (k) fusion of local sub-maps into the global map.
) For the purpose of comparison, another vehicle having iden-
with, tical noise parameters and sensing capabilities, weresmriv
on the same trajectory as that of the first vehicle (Fig 5)
GPELlLl (k) GPE“] Lz(k) Gpg“lm(k) performing EKF-SLAM without CLSF, and properties of the
Gptk)=| °PFL (k) CPf, (k) CPf (k) (8) results were examined. It is evident from Fig. 6 that, due
L1L2 L2L2 L2m h . d f . d . | . b s
GPELan(k) Gpﬁffn(k) Gpt (k) to the periodic map fusion, during Multi-Robot SLAM, it’s

( covariance estimates are lower than that of a vehicle having
identical noise parameters and sensing capabilitiesppeifig

} ©) mono-SLAM without CLSF. The feature estimations of Multi-
Vehicle SLAM, seems to have better performance. Further,
due to overlapped areas of both vehicles, feature estiraates

} much more robust.
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Fig. 4. Norm of the vehicle position covariances of both elds. It's clear
that, when local sub-maps are merged into the global mapnprovement in
position estimation can be obtained. The local sub-mapsnarged at each
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Fig. 2. Tracks of the two vehicles, after performing Mulghicle SLAM. 60 ! ! ! !
The estimated paths of two vehicles are shown in red and gesprectively a0 |
while actual paths are shown in black. Further, actual featare shown as
blue stars while, estimated features are shown in blackr,celacircled in 20+ |
black by corresponding covariance ellipses. - o
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Fig. 5. Track of the first vehicle after performing EKF-SLAMithout
using CLSF process. The blue colored star marks corresporitet actual
-0.4 B features, while red color ellipses correspond to covagaraf observed feature
estimations.
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Fig. 3. The vehicle position estimation error in X directiofhe red color
corresponds to the first vehicle while green correspondse@écond vehicle.

N
T
L

=
o
T
L

B. Field Experiments

Field experiments were conducted using two ASCs in i
toral waters of Singapore (Selat Pauh), in order to valitiate
performance practically. Each ASC was equipped with a DVI % 500 1000 %a‘gg 2000 2500 3000
a GPS unit and a fiber optic gyroscope (FOG) for collecting
navigational and odometry information. For surface featurig. 6. The comparison of first vehicle’s norm of position @dance in
extraction, one of the ASC was equipped with a VeIodyrﬁi;ngle vehicle SLAM case with Multi-Vehicle SLAM case. Thedr color
3D Laser scanner (Fig. 10), while a 2D SICK Laser wer%ahaﬂlgf’\;;ﬁisgg”gﬁ;&ﬂggsfe'.”gle vehicle SLAM case whilekbtasresponds
mounted on the second ASC (Fig. 11).

Two ASCs were driven arround the barge area by allowir 4s0
them to detect the corners of the barge in order to consiger = ,,,
corners as features to be incorporated in the SLAM proce
One of the safety boats was also used as a surface feat
which was kept stationary and is shown in the background £ 4s
Fig. 10.The collected data was processed offline and appl’%m,
to the developed Multi-Vehicle SLAM algorithm. Fig. 7 shows™
the resultant tracks by performing Multi-Vehicle SLAM. Gor
responding position estimation error in X direction is show 4or
in Fig. 8 while Fig. 9 shows the estimation errors in the * ag ‘ ‘ ‘ ‘ ‘ ‘ ‘
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V. CONCLUSION Fig. 7. Tracks of the two vehicles, after performing Muléhicle SLAM
during the field experiments in shallow waters of Singap&a&dt Pauh). The

In this paper, we have explained an application scenario fedture estimations shown with covariance ellipses (ik)l@orresponds to
the CLSFE based multi-robot SLAM [9] algorithm for eva|u_the four corners of the barge and the safety boat used duregxperiment.
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Fig. 8. The vehicle position estimation error in X directidaring the field
experiment. The red color corresponds to the first vehiae'sr while green
corresponds to the errors of second vehicle.
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Fig. 9. The vehicle position estimation error in Y directidaring the field
experiment. The red color corresponds to the first vehiae'sr while green
corresponds to the errors of second vehicle.

Fig. 10. ASC with the Velodyne 3D Laser during the experiméFtte
safety boat seen in the background was also considered aumefeluring
the experiment.

Fig. 11. The ASC with the 2D Laser during the experiment.

ating its performance. We first demonstrated the formutatio
of CLSF based Multi-Vehicle SLAM algorithm, using the fact
that, CSLAM problem can be solved as several mono-SLAM
problems. The ability of delayed fusion of local sub-maps
into the global map made CLSF an ideal and natural tool for
solving the CSLAM problem.

The validity of the algorithm was first evaluated using sim-
ulations and then using real data from experiments conducte
at the Sea. It is evident from the results that, in low clutter
situations, CLSF based multi-robot SLAM algorithm perferm
quite well. We are currently working on CLSF based multi-
robot SLAM algorithms suitable for applications in various
field conditions such as in high clutter environments.

ACKNOWLEDGMENT

This work was supported by National Research Foundation
(NRF), Singapore and Center for Environmental Sensing and
Modeling (CENSAM) under the auspices of the Singapore-
MIT Alliance for Research and Technology (SMART).

REFERENCES

[1] Durrant-Whyte, H. and Bailey, T., “Simultaneous Locatipbn and Map-
ping: part |,” Robotics and Automation Magazine, |EEE, vol. 13, pp.
99-110, Jan 2006.

[2] Bailey, T. and Durrant-Whyte, H., “Simultaneous Locipn and Map-
ping: part 11" Robotics and Automation Magazine, IEEE, vol. 13, pp.
99-110, 2006.

[3] “SLAM summer school,” 2002. [Online]. Available:
http://www.cas.kth.se/SLAM

[4] R. Smith, M. Self, P. Cheeseman, “A stochastic map foreutain spatial
relationships,” inProc. |IEEE International Conference on Robotics and
Automation, 1987.

[5] John W. Fenwick, Paul M. Newman, and John J. Leonard, {ecative
Concurrent Mapping and Localization,” iRroc. |EEE International
Conference in Robotics and Automation, 2002.

[6] S. Thrun and Y. Liu, “Multi-robot SLAM with sparse exteed informa-
tion filters,” in Proc. 11th International Symposium of Robotics Research
(ISRR03), 2003.

[7] A. Howard, “Multi-robot mapping using manifold repregations,” in
Proc. |IEEE International Conference in Robotics and Automation, 2004.



[8] ——, “Multi-robot simultaneous localization and mapginsing particle

El

[20]

[11]

[12]

filters,” Proc. Robotics: Science and Systems, Cambridge, USA, vol. ,

pp. 201-208, June 2005.

Williams, S.B., Dissanayake, G. and Durrant-Whyte, Fgwards multi-
vehicle simultaneous localization and mapping,”Aroc. International

Conference on Robotics and Automation (ICRA'02), 2002.

S.B. Williams, “Efficient Solutions to Autonomous Mapg and Nav-
igation Problems,” Ph.D. dissertation, University of Sgg@gnAustralian
Center for Field Robotics, 2001.

Williams, S.B., Dissanayake, G. and Durrant-Whyte, Hn efficient
approach to the simultaneous localization and mapping lgmb in

Proc. International Conference on Robotics and Automation (ICRA'02),

2002.

P.Newman, “On The Structure and Solution of the Sirmétaus Lo-
calisation and Map Building Problem,” Ph.D. dissertatiomjversity of
Sydney, Australian Center for Field Robotics, 1999.



